Spectral analysis Il

Honza Cernocky, UPGM

Please open Python notebook 03 spectral 2

Agenda

* DFT refresher

* DFT of typical signals

* Properties of DFT

* Some more math on DFT

e Spectrogram and what can we do with it
 Summary and “take-home” messages

Discrete Fourier transform (DFT) analysis

N-1
X k| = Z x[n]e‘j%%”
n=0

* Input: signal x[n] of N samples

* Output: N complex coefficients X[k] providing the information on

* Frequency — index k, corresponds to normalized frequency k/N and regular
frequency k/N F.. Normalization and de-normalization of frequency involves a
simple division or multiplication by sampling frequency F..

 How much ? Magnitude (absolute value, modul) | X[k]|.

* How shifted ? Phase (angle, argument, phase shift) arg X[k].

* Easy to implement by definition but using FFT is much faster
(for N = 2°)

DFT analysis Il.

* For real input signals x[n], coefficients X[k] are symmetrical (complex
conjugate X[k] = X" [N-k]:
e |X[k]| = |X[N-k]| and arg X[k] =-arg X[N-k]
e ... so that it is enough to store and visualize the spectrum only from

k = 0to k =N/2. This corresponds to normalized frequencies 0 ... /5
and regular frequencies 0 ... F/2.

e Attention, the number of coefficients to retain is
NOT N/2 but N/2+1 !l

#dft_anal

DFT synthesis - IDFT ol = X 3™ X[pjetnbn

* Input: N complex coefficients X[k]

* Output: N samples of signal x[n].
* In case we did nothing with the spectrum, x[n] is exactly the same as x/n].

e Synthesis by DFT involves summing pairs of complex exponentials at k
and N-k running “against each other”, creating one shifted cosine —
see derivation in the last lecture.

 When computing, DFT/FFT can produce very small imaginary components,
better to kill them using np.real ().

#dft synt

Agenda

* DFT refresher

* DFT of typical signals

* Properties of DFT

* Some more math on DFT

e Spectrogram and what can we do with it
 Summary and “take-home” messages

DFT of a D.C. (stejnosmerny) / constant signal

* x[n] =a
N-1
Xk = Z ae 2N
n=0

e For k=0, the sum is X/0] = Na.

* For everything else, the sum of k “revolutions” of the complex
exponential is zero.

* Intuition check: D.C. has just zero frequency, everything else should
be zero - OK

Very slow signal <=> narrow spectrum
#dft of constant

7/43

DFT of a pulse (impuls) at time zero

e x[0] = a, otherwise x[n] = 0.

N-1
- _ionk _ionk
Xk] = E rn]e VTN = qe 7T NY = qe¥ = q
n=0

* Only the term for n=0 will produce something - here, the complex
exponential is exp(0) = 1, so X[k] = a for all k’s

* Intuition check: the pulse is very fast (like a click), should contains lots
of frequencies - OK

Very fast signal <=> wide spectrum

#dft _of pulse

8/43

DFT of a shifted pulse (posunuty impuls)

* x[g] = a, otherwise x[n] = 0. g is the position of the pulse.
N—1
Xk] = Z a:[n]e_j%%” = qe I2TNY
n=>0
* Only the term for n=g will produce something - here, the complex
exponential is exp(-2rr g k / N), so
e X[k] =aexp(-2rtgk/N).
 Magnitudeis |X[k] | =a
* Phaseis arg (aexp(-2rgk/N))=-2rmtgk/N .. linear with slope-2rrg/N

* For visualization, you might try using np . unwrap to see values of phase
outside of —rt ... +.

* Intuition check: the signal only shifted, the magnitudes should not change,
shift should be reflected in phases - OK

#dft_of shifted pulse

y/

DFT of a rectangular pulse (pravouh
obdélnikovy impuls)

* x[n] =a for n =0...g-1, zero otherwise (so it will have g non-zero
samples).

* No derivation (we’ll see this later) but remember that wide signal
should have narrow spectrum and narrow signal should have wide

spectrum ...

#dft _of rectangle

* The function we see is sin(x) / x, so called cardinal sine (kardinalni
sinus). We'll be seeing this a lot ...

* For narrow rectangles, the cardinal sine lobes (laloky) seem to be
distorted as we move towards F,/2 — this is caused by aliasing (more
about it in the lecture on sampling)

|II

DFT of a “symmetrical” rectangular pulse

* Trying to make the rectangle symmetrical so that the phase is not
shifted.

* Will work only for odd (liché) g by setting the same amount of
samples for negative n as for positive n. For example, for g = 5, set
x[-2 ... +2] = a

* However, we can not work with negative indices, so we need to
consider the end of input buffer as negative indices ...
x[0... 2] =a, x[N-2] =a, x[N-1] =a

#dft_of symmetrical rectangle

* The phase is either O or +7T, this means that this spectrum is real — just
positive or negative numbers !

Symmetrical signal <=> real spectrum

DFT of cosine with the period of N samples

x[n] = ACOS(27T%R + ¢)

* We could run the DFT analysis, but let’s work the “lazy” way:

* Split the cosine using our well known formula sy e
2
x[n] — éejqbejzﬂ_%n _|_ ée_jﬁbe_jQﬂ'%n
2 2

* Write the synthesis formula next to it and try to see if we can find respective
coefficients o] = iNfX[k]eH?ﬂ%n
* We easily find xi=n~5e NS
* The next one we could find is X[-1] which is not there (can use only indices
from O ... N-1) but we already know about the symmetry: x[-1j=x(v -1 x[v—1]= Nge—fd’
 Coefficients X[1] and X[N-1] for a cosine are almost the same, except
for the phase |X[1]|=\X[N—1]|:N§ arg X[1] = ¢, arg X|[N — 1] = —¢ X[1] = X*[N — 1]

#dft_of cosl - OMG, what’s going on with the phase ???

DFT of cosine with more periods in N samples
x[n] = ACOS(Q?T%’TZ + @)

* We could find the values of coefficients exactly in the same way, just
looking at index g instead of 1

* Exactly the same, only the index will change: x[g] = Ngeﬁb
X[—g] = XN — 4] X[N—g]:Nge‘qu
* Magnitudes are the same, arguments opposite:
X[= X[V gl =N5 argX[g] =0, argX[N—gl=—¢ x[g—X*[N—g

#dft_of cos_multiperiod

DFT of a cosine that does not fit exactly N
samples ...

* In real life, we can not say “I’'m going to analyze only signals with
period od 128 samples”. We obtain an input and we have to go ...

* So it can happen (and it regularly happens) that our cos is “badly cut”.
* Remember: any sharp edge in a signal generates high frequencies.
#dft_of general cos

For a period that does not fit into N exactly k times (“wrong cut” of
cos), the spectrum is “leaking” to neighboring frequencies.

Why ? Because we’re windowing our signal ...

* x[n] =w[n] s[n], where w[n] is the window function.

* In case of multiplication of signals in time, we’ll have a convolution
(konvoluce) of spectra in frequency.

* More about convolution in the filtering lecture, for cosine signal, it
simply means, that the spectrum of w/[n] shifts to its frequency

e So what is the spectrum of our window ?

* Analyzing N samples is not enough, we’d get a constant (and we know it’s
spectrum is a single coefficient).

* Increasing N to more samples by zero padding: 256 -> N, = 4096 (16x)
 Zoom only on low frequencies to see details ... and showing only magnitude
e ... also showing where are the points of length N DFT !

#dft rectangle zeropad

Better frequency resolution for a “good”

cosine
g
x|n] = Acos(27rﬁn + ¢)

#dft of cos _multiperiod detalil
* Here, we see the cardinal sine, but the frequencies of the original DFT
sample it exactly at zero values |

Better frequency resolution for a “bad” cosine

#dft _of cos generalcos detail

* We see the cardinal sine, and we are not lucky, so the theoretical 1
line “leaks” into neighboring frequencies.

* We can try to fix it by another window ... Hamming

27N

= 0.54 — 0.46
w{n| Cos —

for 0 <n <N -1, 0 elsewhere

#dft of generalcos Hamming

* Less “messy” spectrum than the rectangular window (the edges
resulting from “bad cutting” are attenuated) but also worse
frequency resolution.

* Remember: smoother signal <=> wider spectrum.

DFT of something periodic

* Periodic rectangular pulses with period N,

* Fitting N samples with an integer number of periods
#dft_pulsetrain

 Compared to the spectrum of one rectangular pulse, the spectrum is
sampled.

* The positions of samples correspond to 1/N_,,,.. (hormalized

pulse
frequency) and F; /N, (regular frequency).

Periodic signal <=> sampled “discrete” spectrum

18 /43

DFT of a periodic signal with a “wild” period

* Periodic rectangular pulses with period N,

* Not fitting N samples with an integer number of periods (which is the
usual situation ...)

#dft_pulsetrain_general

* It does something but there is a brutal “leaking” into neighboring
frequencies impacting also the shape of the spectrum.

* However, this is what we’re doing most of the time — see the speech
signal #dft_anal at the beginning of this lecture

In case we know the period, or are able to measure it precisely, DTFT
might be a safer option.

Agenda

* DFT refresher

* DFT of typical signals

* Properties of DFT

* Some more math on DFT

e Spectrogram and what can we do with it
 Summary and “take-home” messages

Scaling

* If the signal is multiplied with a constant, y[n] = a x[n], the DFT
coefficients will be Y[k] = a X[k]

* Proof: N1 N1
Xk] = Z aaz[n]e_ﬂ”%” =a Z :U[n]e_ﬂ”%” = aX k]
n=0 n=0

#dft scaling

Additivity

e |f
* DFT for signal x,[n] is X,[k]
* and DFT for signal x,[n] is X,[k]

* Then, if we sum the signals: y[n] = x,[n] + x,[n]

* The resulting DFT will be also the sum of the original ones:
Y(k] = X,[k] + X,[k]

* Proof:
N—-1

X|k] = Z(\[n] + z2[n])e 72" Z 1 [n]e 2N 4 i za[n]e 7N = X4 [k] + Xo[k]
#dft_additinwty

... why don’t the values of phases match at some points ?

Linearity

* Scaling and additivity together
* If DFT for signal x,[n] is X,[k] and DFT for signal x,[n] is X,[k]

* Then, if we do a weighted sum the signals:)
éjw D é\«. A}-

y[n] =a,x,[n] +a,x,[n] ;; &~ M 6

K\ , Aj;

* the resulting spectrum will be exactly the same weighted
combination of the original ones: Y[k] = a, X,[k] + a, X,[k]

N—-1 N-—1 N—1 v
X[]f] == Z (alﬂjl [n] + &Qﬂfg[ﬂ])e_jzﬂ%n = 1 Z Il[n]e_jzﬂ—%n —+ a9 Z xz[n]e_jQW%’n — G1X1 [lf] 4 CL1X2[IC] l/

n=0 1n=0 n=0

#dft_linearity
Linearity is absolutely crucial in many applications, and we
intentionally use non-linearities in others — neural networks.

Shifts of short signals

* Consider a relatively short signal x [n] that has DFT X/[k].

* What happens if this signal is shifted to the right (delayed) by m
samples: y[n] = x[n-m] (let’s consider that the signal does not leave
the interval 0 ... N-1)

* The complex exponentials “seeing” the signal will be m samples
“older”, so that we can re-write the DFT as

N—-1 N-—-1
— _ _ K — ik
Y[/f § y j2mEn E fLU[?’L _ j2rEn Z iIZ 321rN(n—|—m) — Z at[n]e j2m 3 (ntm) _
n=0 n=0
N—-1
Z x[n]e—g%r neo— j2rEm _ —327r m Z ZE —327r%n _ e—j?ﬂ’%mX[k‘]

n=0

* The resulting coefficient is the original one multiplied with a
correction factor”: Y k] = e 727 Fm X [k]

* The magnitude of the correctionis 1,50 |Y[k]| = |e 72" ~™| |X[k]| = | X[K]

* The phase of the correction is shifted by a linear function.

arg Y[k] = arge 7"~ + arg X [k] = arg X [k] — QWﬁm

The magnitude spectrum will be the same, the phase one will be
inclined “downhill” for delay and “uphill” for advancing the signal.

#dft_shifted lin

Shift of a signal that covers the whole period

* Consider a longer signal, for example a cosine nicely fitting in N
samples

* When shifted, “gaps” appear, and creates edges generating unwanted
frequencies ...

#dft_shifted lin_long
Ooops, that’s a mess ®

Correct way to shift signals for DFT ...

e Remember: we need to always stay in the buffer 0 ... N-1

* In case m samples of the signal are pushed out at the end, they need
to return to the beginning.

am
ngo_;’i? sk

27 /43

Circular shift mathematically

* Modulo N function always returns values from 0... N-1

* Implementing circular shift by modulo indexing:
y[n] = x [mody (n-m)]

* For such a circular shift, we can safely use the correction computed
above - the resulting coefficient is the original one multiplied with a
“correction factor”: Y[k] = e 2" ¥ " X[k]

* The magnitude of the correctionis 1, so Y[E]| = \e—j%%ﬂ X [k]| = | X[K]|

* The phase of the correction is shifted by a linear function.

arg Y[k] = arge 7*"N"™ 4 arg X[k] = arg X [k] — 27rﬁm

The magnitude spectrum will be the same, the phase one will be
inclined “downhill” for delay and “uphill” for advancing the signal.

#dft_shift_circular

Agenda

* DFT refresher

* DFT of typical signals

* Properties of DFT

* Some more math on DFT

e Spectrogram and what can we do with it
 Summary and “take-home” messages

Orthogonality

* For 2D, we can check the orthogonality (kolmost) bYﬂ hand ...

A
3 o
&1 Qa.
——————E===-=;+““'“*'€D
a, 41 ’5——"‘% >

 Mathematically, checking by dot-product
*[10][01]"=1x0+0x1=0 orthogonal
*[10][11]'=1x0+1x1=1 notorthogonal
e [11][-11]"=1x(-1)+1x1=0orthogonal

30/43

Are DFT bases orthogonal ?

* We'll check it by a standard dot-product over N samples.

N-1
c= Z ainja;[n] =0, for k+#I
n=0

e But we have complex bases, so need to do complex conjugation (as

for projection N-1
ahe) c= Zak[n]af[n]zo, for k #1
n=0

* For DFT bases, we have

N—-1 N—1
ok _(_iopk oLk
c= E eI (72T Nl — E TN " =0, for k#I

DFT bases ARE orthogonal 31/43

Are DFT bases normal ?

e Norm of each basis must be 1 ...

N-—1
lalnlll: = > laln]|?
* For DFT: "

N—-1 N—-1
. k
lafnllla =) [e™*"x"2 =3 " 1=N

e The normis not 1, but N, so we need to correct in the IDFT when

synthesizing the signal: N—1
Y g g 2[n] = % Z X[k]e—l—jQ'n%n
k=0

* Remember the multiplication by N when computing coefficients for a

: A
cosine ! X[gll = IXIN — gl = NG

After IDFT fix, DFT bases are normal, so they are also orthonormal.

32/43

DFT extending beyond k=0 ... N-1 — periodicity

* We have defined DFT to strictly compute the spectrum for k=0 ... N-1, this
corresponds to
* Normalized frequencies from 0 to almost 1 (precisely (N-1)/ N)
* Regular frequencies from 0 to almost F, (precisely F(N-1) / N)

* And we usually visualize it only till N/2 (i.e. till 2 in normalized frequencies and
F/2 in regular ones).

* What happens if we go beyond interval k=0... N-1?
* Augmenting k by a multiple of the number of samples N:

N-1 . N-1 N N-1 .
X[k‘ +9N} _ Z m[n]e—_ﬁﬂ-%n _ Z x[n]e—jQW(f‘T}+%)n Z :B[n]e—j%r%ne—j}n%n _
n=0 n=0 n=0
N—-1 N—1

Z x[n}e—jQﬂ'%ne—jZﬁgn _ Z x[n}e—jQN%-Ill _ X[k]
n—>0 n=0

* DFT is periodic with N samples. In frequencies, this corresponds to
periodicity
e With period of 1 (normalized frequencies)
* With period of F_(regular frequencies)

IH

* This is the “mathematical” proof of periodicity, we will see another
one in the lecture on sampling !

* We can do a similar proof for DTFT

#dft_periodicity) N-1 N-1
— X(ej(w+927r)) _ Z :r[n]e—j(w+92ﬁ)n _ Z x[n]e—j(wn—l—g%ﬂl) _
n=>0 n=0
N—-1 N-1

Z :az:[?ﬂe°,_j°‘"”’e_jgngj'r = Z z[nle 79" = X(ej“)

n=>0 n=0

Agenda

* DFT refresher

* DFT of typical signals

* Properties of DFT

* Some more math on DFT

e Spectrogram and what can we do with it
 Summary and “take-home” messages

Spectrogram

* We want to see the evolution of spectrum over time.
* For our speech signal, want something like this:

3000 -
2500 -
2000 -
1500 -
1000 -
500 -

32767

i M | WL _||_ fll ..I.l -|“-|-|'|u-||" phub LAY ..I||_||.I I| |I"|||||'-'|Iu-||'-‘u'r'-'— oA fs Lo SWSBUTN Y. | S e L .‘.fk'..,l'l b Wk'

-31523

e Calling #spectrogram_blackbox without knowing what it really does.
* We better learn what the spectrogram does exactly

Pre-processing of the signal before
computation

* Division of a long signal into short segments — frames (ramce)

* Segmentation without overlap

<N 'overlap=0

e Segmentation with overlap (moLre usual)

| -

N
e —

shift: overlap
' — -

37/43

Windowing the frames and running DFT for
all ...

* Window each frame by a selected window
* Rectangular — good frequency selectivity, more mess at higher frequencies.
* Hamming — worse frequency selectivity, less mess at higher frequencies.

* Hanning (or Hann) window — a sequence overlapping by N/2 sumsup to 1 —
see later. Beware of confusion ‘mm’ vs ‘nn’ ...

* If needed, zero-pad to reach the desired number of point Ng.
* As usual, select only 0... N/2, resp 0... Ng,/2 points.

* Visualize

H#spectrogram

More on spectrogram visualization

* We usually take the log of so called power spectral density — square of
spectrum 10 log,, | X[k]|%and claim it is in decibel [dB]

 Selection of colormap ...

* Playing with brightness,
contrast, etc ...

L4 = S
= =
|eayzads Jamog

&
[=]
[gp] Aysuzp

g

-40

Short-term vs long-term spectrogram

* Wanted: more details in frequency => set longer frame length =>
however, less precision in time (averaging details over longer time...) —
long-term spectrogram

* Wanted: more details in time => set shorter frame length (eventually
with more FFT points to have a nice figure) => however, less precision
in frequency (the frame “sees” less signal) — short-term spectrogram

* Wanted: more frames per second => set more overlap (less frame
shift) => however, will not be able to detect short events (still
averaged by the frame length...

#ispectrogram_long short_term

Setting good spectrogram parameters is a tricky business and there is
no universal solution — ask colleagues and then tune the parameters.

40 /43

Synthesizing signal from spectrogram

* Need to be careful with the analysis — define frames with % frame
overlap and use Hanning (Hann) window — their sequence sums
exactly to 1.

* When synthesizing, initialize a buffer with the length of the resulting
signal by zeros, then run a cycle:

* For each frame, take spectrum and complete the upper (from N/2+1 ... N-1)
by the symmetry X[k] = X"[N-k]

* Perform IDFT that generates the current frame.

* Add it to the buffer

* Move to the next frame, shift the position where signal will be added to the
buffer by frame overlap.

#dft synt

Playing with spectrogram | — filtering

* Without changes to the spectrogram, the Hanning window can be
applied either in the analysis (before DFT) or in the synthesis (after
IDFT)

* However, if spectrogram is modified, it is good to perform the
windowing on both ends. However, the whole thing needs to be still
Hanning window, so:

* Apply sgrt of Hanning before DFT
* Apply sgrt of Hanning after IDFT
e sgrt Hanning * sgrt Hanning = Hanning.

#ispectrogram_filtering — deleting part of spectrogram + up to you to
try anything else

Playing with spectrogram Il — duration
modification

* Taking every 2" frame from the spectrum — shortening 2x — “Ostrava
accent”

* Repeating every frame — lengthening 2x — “Prague accent”

#spectrogram_duration_modif

The quality of audio is not perfect — the phases would need better
processing (continuity of phase across frames).

Agenda

* DFT refresher

* DFT of typical signals

* Properties of DFT

* Some more math on DFT

e Spectrogram and what can we do with it
e Summary and “take-home” messages

SUMMARY

* DFT (computed by FFT) is the basic tool for frequency analysis.

* Basic truths on signals and spectra:
* Narrow signal <=> wide spectrum
* Wide (smooth) signal <=> narrow spectrum
* Periodic signal <=> discrete spectrum
* Discrete signal <=> periodic spectrum

* Shifts of signals
* Delay => magnitude spectrum stays the same, phase goes downbhill.
* Advance => magnitude spectrum stays the same, phase goes uphill.
* For DFT, we need to do circular shifts to stayin 0 ... N-1

45

SUMMARY 1.

e Spectrogram is evolution of spectrum in time
e Contains magnitude and phase, only magnitude is shown

 Lots of tuning can be done by non-linearity (log), colormaps, and setting brightness
and contrast of the image.

e Better frequency or better time resolution, but not both — long vs. short-term
spectrogram

* Synthesis of signal from spectrogram
* Analysis should be done carefully — shift is % of the frame-length, Hanning window.
« Spectrum needs to be completed by the 2"d half before IDFT.
* In case modifications are done, it’s safer to use sequence of sqrt(Hanning) and
sqrt(Hanning)

* Filtering is usually done by other means, but spectrogram modifications are
of great use in machine learning (learned T-F masks, etc).

	Slide 1: Spectral analysis II
	Slide 2: Agenda
	Slide 3: Discrete Fourier transform (DFT) analysis
	Slide 4: DFT analysis II.
	Slide 5: DFT synthesis - IDFT
	Slide 6: Agenda
	Slide 7: DFT of a D.C. (stejnosměrný) / constant signal
	Slide 8: DFT of a pulse (impuls) at time zero
	Slide 9: DFT of a shifted pulse (posunutý impuls)
	Slide 10: DFT of a rectangular pulse (pravoúhlý / obdélníkový impuls)
	Slide 11: DFT of a “symmetrical” rectangular pulse
	Slide 12: DFT of cosine with the period of N samples
	Slide 13: DFT of cosine with more periods in N samples
	Slide 14: DFT of a cosine that does not fit exactly N samples …
	Slide 15: Why ? Because we’re windowing our signal …
	Slide 16: Better frequency resolution for a “good” cosine
	Slide 17: Better frequency resolution for a “bad” cosine
	Slide 18: DFT of something periodic
	Slide 19: DFT of a periodic signal with a “wild” period
	Slide 20: Agenda
	Slide 21: Scaling
	Slide 22: Additivity
	Slide 23: Linearity
	Slide 24: Shifts of short signals
	Slide 25
	Slide 26: Shift of a signal that covers the whole period
	Slide 27: Correct way to shift signals for DFT …
	Slide 28: Circular shift mathematically
	Slide 29: Agenda
	Slide 30: Orthogonality
	Slide 31: Are DFT bases orthogonal ?
	Slide 32: Are DFT bases normal ?
	Slide 33: DFT extending beyond k=0 … N-1 – periodicity
	Slide 34
	Slide 35: Agenda
	Slide 36: Spectrogram
	Slide 37: Pre-processing of the signal before computation
	Slide 38: Windowing the frames and running DFT for all …
	Slide 39: More on spectrogram visualization
	Slide 40: Short-term vs long-term spectrogram
	Slide 41: Synthesizing signal from spectrogram
	Slide 42: Playing with spectrogram I – filtering
	Slide 43: Playing with spectrogram II – duration modification
	Slide 44: Agenda
	Slide 45: SUMMARY
	Slide 46: SUMMARY II.

