
Spectral analysis II

Honza Černocký, ÚPGM

Please open Python notebook 03_spectral_2 



Agenda

• DFT refresher

• DFT of typical signals

• Properties of DFT

• Some more math on DFT 

• Spectrogram and what can we do with it 

• Summary and “take-home” messages

2 / 43



Discrete Fourier transform (DFT) analysis

• Input: signal x[n] of N samples 

• Output: N complex coefficients X[k] providing the information on 
• Frequency – index k, corresponds to normalized frequency k/N and regular 

frequency k/N Fs. Normalization and de-normalization of frequency involves a 
simple division or multiplication by sampling frequency Fs.

• How much ? Magnitude (absolute value, modul) |X[k]|. 

• How shifted ? Phase (angle, argument, phase shift) arg X[k].

• Easy to implement by definition but using FFT is much faster 
(for N = 2b)
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DFT analysis II. 

• For real input signals x[n], coefficients X[k] are symmetrical (complex 
conjugate X[k] = X*[N-k]:
• |X[k]| = |X[N-k]|     and     arg X[k] = -arg X[N-k]

• … so that it is enough to store and visualize the spectrum only from 
k = 0 to k = N/2. This corresponds to normalized frequencies 0 … ½ 
and regular frequencies 0 … Fs/2. 

• Attention, the number of coefficients to retain is 
NOT N/2 but N/2+1 !!! 

#dft_anal
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DFT synthesis - IDFT

• Input: N complex coefficients X[k]

• Output: N samples of signal xs[n]. 
• In case we did nothing with the spectrum, xs[n] is exactly the same as x[n]. 

• Synthesis by DFT involves summing pairs of complex exponentials at k
and N-k running “against each other”, creating one  shifted cosine –
see derivation in the last lecture. 
• When computing, DFT/FFT can produce very small imaginary components, 

better to kill them using np.real(). 

#dft_synt
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Agenda

• DFT refresher

• DFT of typical signals

• Properties of DFT

• Some more math on DFT 

• Spectrogram and what can we do with it 

• Summary and “take-home” messages
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DFT of a D.C. (stejnosměrný) / constant signal 

• x[n] = a

• For k=0, the sum is X[0] = Na. 

• For everything else, the sum of k “revolutions” of the complex 
exponential is zero. 

• Intuition check: D.C. has just zero frequency, everything else should 
be zero - OK

Very slow signal <=> narrow spectrum 

#dft_of_constant
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DFT of a pulse (impuls) at time zero 

• x[0] = a, otherwise x[n] = 0. 

• Only the term for n=0 will produce something - here, the complex 
exponential is exp(0) = 1, so X[k] = a for all k’s

• Intuition check: the pulse is very fast (like a click), should contains lots 
of frequencies - OK

Very fast signal <=> wide spectrum 

#dft_of_pulse
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DFT of a shifted pulse (posunutý impuls)

• x[g] = a, otherwise x[n] = 0. g is the position of the pulse. 

• Only the term for n=g will produce something - here, the complex 
exponential is exp(-2π g k / N), so 
• X[k] = a exp(-2π g k / N). 
• Magnitude is |X[k] | = a
• Phase is arg (a exp(-2π g k / N)) = -2π g k / N … linear with slope -2π g / N

• For visualization, you might try using np.unwrap to see values of phase 
outside of –π … +π. 

• Intuition check: the signal only shifted, the magnitudes should not change, 
shift should be reflected in phases - OK

#dft_of_shifted_pulse
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DFT of a rectangular pulse (pravoúhlý / 
obdélníkový impuls)
• x[n] = a for n = 0…g-1, zero otherwise (so it will have g non-zero 

samples). 

• No derivation (we’ll see this later) but remember that wide signal 
should have narrow spectrum and narrow signal should have wide 
spectrum … 

#dft_of_rectangle

• The function we see is sin(x) / x, so called cardinal sine (kardinální 
sinus). We’ll be seeing this a lot … 

• For narrow rectangles, the cardinal sine lobes (laloky) seem to be 
distorted as we move towards Fs /2 – this is caused by aliasing (more 
about it in the lecture on sampling) 
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DFT of a “symmetrical” rectangular pulse

• Trying to make the rectangle symmetrical so that the phase is not 
shifted. 

• Will work only for odd (liché) g by setting the same amount of 
samples for negative n as for positive n. For example, for g = 5, set 
x[-2 … +2] = a

• However, we can not work with negative indices, so we need to 
consider the end of input buffer as negative indices … 
x[0 … 2] = a, x[N-2] = a, x[N-1] = a

#dft_of_symmetrical_rectangle

• The phase is either 0 or ±π, this means that this spectrum is real – just 
positive or negative numbers ! 

Symmetrical signal <=> real spectrum 11 / 43



DFT of cosine with the period of N samples

• We could run the DFT analysis, but let’s work the “lazy” way:
• Split the cosine using our well known formula

• Write the synthesis formula next to it and try to see if we can find respective 
coefficients

• We easily find
• The next one we could find is X[-1] which is not there (can use only indices 

from 0 … N-1) but we already know about the symmetry:

• Coefficients X[1] and X[N-1] for a cosine are almost the same, except 
for the phase

#dft_of_cos1 - OMG, what’s going on with the phase ??? 
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DFT of cosine with more periods in N samples

• We could find the values of coefficients exactly in the same way, just 
looking at index g instead of 1

• Exactly the same, only the index will change: 

• Magnitudes are the same, arguments opposite: 

#dft_of_cos_multiperiod
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DFT of a cosine that does not fit exactly N
samples … 
• In real life, we can not say “I’m going to analyze only signals with 

period od 128 samples”. We obtain an input and we have to go … 

• So it can happen (and it regularly happens) that our cos is “badly cut”. 

• Remember: any sharp edge in a signal generates high frequencies. 

#dft_of_general_cos

For a period that does not fit into N exactly k times (“wrong cut” of 
cos), the spectrum is “leaking” to neighboring frequencies. 
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Why ? Because we’re windowing our signal … 

• x[n] = w[n] s[n], where w[n] is the window function. 

• In case of multiplication of signals in time, we’ll have a convolution 
(konvoluce) of spectra in frequency. 

• More about convolution in the filtering lecture, for cosine signal, it 
simply means, that the spectrum of w[n] shifts to its frequency 

• So what is the spectrum of our window ? 
• Analyzing N samples is not enough, we’d get a constant (and we know it’s 

spectrum is a single coefficient). 
• Increasing N to more samples by zero padding: 256 -> Nfft = 4096 (16x)
• Zoom only on low frequencies to see details … and showing only magnitude
• … also showing where are the points of length N DFT ! 

#dft_rectangle_zeropad
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Better frequency resolution for a “good” 
cosine

#dft_of_cos_multiperiod_detail

• Here, we see the cardinal sine, but the frequencies of the original DFT 
sample it exactly at zero values ! 
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Better frequency resolution for a “bad” cosine

#dft_of_cos_generalcos_detail

• We see the cardinal sine, and we are not lucky, so the theoretical 1 
line “leaks” into neighboring frequencies. 

• We can try to fix it by another window … Hamming

#dft_of_generalcos_Hamming

• Less “messy” spectrum than the rectangular window (the edges 
resulting from “bad cutting” are attenuated) but also worse 
frequency resolution. 

• Remember: smoother signal <=> wider spectrum. 
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DFT of something periodic 

• Periodic rectangular pulses with period Npulse

• Fitting N samples with an integer number of periods 

#dft_pulsetrain

• Compared to the spectrum of one rectangular pulse, the spectrum is 
sampled. 

• The positions of samples correspond to 1/ Npulse (normalized 
frequency) and Fs / Npulse (regular frequency). 

Periodic signal <=> sampled “discrete” spectrum 
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DFT of a periodic signal with a “wild” period

• Periodic rectangular pulses with period Npulse

• Not fitting N samples with an integer number of periods (which is the 
usual situation …)

#dft_pulsetrain_general

• It does something but there is a brutal “leaking” into neighboring 
frequencies impacting also the shape of the spectrum. 

• However, this is what we’re doing most of the time – see the speech 
signal #dft_anal at the beginning  of this lecture 

In case we know the period, or are able to measure it precisely, DTFT 
might be a safer option. 
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Agenda

• DFT refresher

• DFT of typical signals

• Properties of DFT

• Some more math on DFT 

• Spectrogram and what can we do with it 

• Summary and “take-home” messages
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Scaling 

• If the signal is multiplied with a constant, y[n] = a x[n], the DFT 
coefficients will be Y[k] = a X[k]

• Proof:

#dft_scaling
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Additivity 

• If 
• DFT for signal x1[n] is X1[k] 

• and DFT for signal x2[n] is X2[k] 

• Then, if we sum the signals: y[n] = x1[n] + x2[n]

• The resulting DFT will be also the sum of the original ones: 
Y[k] = X1[k] + X2[k] 

• Proof:

#dft_additivity

… why don’t the values of phases match at some points ? 
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Linearity 

• Scaling and additivity together

• If DFT for signal x1[n] is X1[k] and DFT for signal x2[n] is X2[k] 

• Then, if we do a weighted sum the signals: 
y[n] = a1 x1[n] + a2 x2[n]

• the resulting spectrum will be exactly the same weighted 
combination of the original ones: Y[k] = a1 X1[k] + a2 X2[k] 

#dft_linearity

Linearity is absolutely crucial in many applications, and we 

intentionally use non-linearities in others – neural networks. 
23 / 43



Shifts of short signals 

• Consider a relatively short signal x [n]  that has DFT X[k]. 

• What happens if this signal is shifted to the right (delayed) by m
samples: y[n] = x[n-m]  (let’s consider that the signal does not leave 
the interval 0 … N-1)

• The complex exponentials “seeing” the signal will be m samples 
“older”, so that we can re-write the DFT as
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• The resulting coefficient is the original one multiplied with a 
“correction factor”: 

• The magnitude of the correction is 1, so 

• The phase of the correction is shifted by a linear function. 

The magnitude spectrum will be the same, the phase one will be 
inclined “downhill” for delay and “uphill” for advancing the signal. 

#dft_shifted_lin
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Shift of a signal that covers the whole period

• Consider a longer signal, for example a cosine nicely fitting in N
samples

• When shifted, “gaps” appear, and creates edges generating unwanted 
frequencies … 

#dft_shifted_lin_long

Ooops, that’s a mess 
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Correct way to shift signals for DFT … 

• Remember: we need to always stay in the buffer 0 … N-1

• In case m samples of the signal are pushed out at the end, they need 
to return to the beginning. 
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Circular shift mathematically 

• Modulo N function always returns values from 0 … N-1

• Implementing circular shift by modulo indexing: 
y[n] = x [ modN (n-m)]

• For such a circular shift, we can safely use the correction computed 
above - the resulting coefficient is the original one multiplied with a 
“correction factor”: 
• The magnitude of the correction is 1, so 

• The phase of the correction is shifted by a linear function. 

The magnitude spectrum will be the same, the phase one will be 
inclined “downhill” for delay and “uphill” for advancing the signal. 
#dft_shift_circular
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Agenda

• DFT refresher

• DFT of typical signals

• Properties of DFT

• Some more math on DFT 

• Spectrogram and what can we do with it 

• Summary and “take-home” messages
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Orthogonality 

• For 2D, we can check the orthogonality (kolmost) by hand …

• Mathematically, checking by dot-product
• [1  0] [0  1]T = 1 x 0 + 0 x 1 = 0   orthogonal

• [1  0] [1  1]T = 1 x 0 + 1 x 1 = 1   not orthogonal

• [1  1] [-1  1]T = 1 x (-1) + 1 x 1 = 0 orthogonal
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Are DFT bases orthogonal ? 

• We’ll check it by a standard dot-product over N samples. 

• But we have complex bases, so need to do complex conjugation (as 
for projection)

• For DFT bases, we have

DFT bases ARE orthogonal 31 / 43



Are DFT bases normal ? 

• Norm of each basis must be 1 … 

• For DFT: 

• The norm is not 1, but N, so we need to correct in the IDFT when 
synthesizing the signal: 

• Remember the multiplication by N when computing coefficients for a 
cosine ! 

After IDFT fix, DFT bases are normal, so they are also orthonormal. 
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DFT extending beyond k=0 … N-1 – periodicity 

• We have defined DFT to strictly compute the spectrum for k=0 … N-1, this 
corresponds to 
• Normalized frequencies from 0 to almost 1 (precisely (N-1) / N)

• Regular frequencies from 0 to almost Fs (precisely Fs(N-1) / N)

• And we usually visualize it only till N/2 (i.e. till ½ in normalized frequencies and 
Fs/2 in regular ones). 

• What happens if we go beyond interval k=0 … N-1 ?

• Augmenting k by a multiple of the number of samples N:
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• DFT is periodic with N samples. In frequencies, this corresponds to 
periodicity 
• With period of 1 (normalized frequencies)

• With period of Fs (regular frequencies)

• This is the “mathematical” proof of periodicity, we will see another 
one in the lecture on sampling !

• We can do a similar proof for DTFT 

#dft_periodicity
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Agenda

• DFT refresher

• DFT of typical signals

• Properties of DFT

• Some more math on DFT 

• Spectrogram and what can we do with it 

• Summary and “take-home” messages
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Spectrogram 

• We want to see the evolution of spectrum over time. 

• For our speech signal, want something like this:

• Calling #spectrogram_blackbox without knowing what it really does.  

• We better learn what the spectrogram does exactly 36 / 43



Pre-processing of the signal before 
computation
• Division of a long signal into short segments – frames (rámce)

• Segmentation without overlap 

• Segmentation with overlap (more usual) 
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Windowing the frames and running DFT for 
all … 
• Window each frame by a selected window

• Rectangular – good frequency selectivity, more mess at higher frequencies. 

• Hamming – worse frequency selectivity, less mess at higher frequencies. 

• Hanning (or Hann) window – a sequence overlapping by N/2 sums up to 1 –
see later. Beware of confusion ‘mm’ vs ‘nn’ …

• If needed, zero-pad to reach the desired number of point Nfft. 

• As usual, select only 0… N/2, resp 0… Nfft/2 points. 

• Visualize

#spectrogram
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More on spectrogram visualization 

• We usually take the log of so called power spectral density – square of 
spectrum 10 log10 |X[k]|2 and claim it is in decibel [dB]

• Selection of colormap …

• Playing with brightness, 
contrast, etc … 
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Short-term vs long-term spectrogram 

• Wanted: more details in frequency => set longer frame length => 
however, less precision in time (averaging details over longer time…) –
long-term spectrogram

• Wanted: more details in time => set shorter frame length (eventually 
with more FFT points to have a nice figure) => however, less precision 
in frequency (the frame “sees” less signal) – short-term spectrogram

• Wanted: more frames per second => set more overlap (less frame 
shift) => however, will not be able to detect short events (still 
averaged by the frame length… 

#spectrogram_long_short_term

Setting good spectrogram parameters is a tricky business and there is 
no universal solution – ask colleagues and then tune the parameters. 
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Synthesizing signal from spectrogram 

• Need to be careful with the analysis – define frames with ½ frame 
overlap and use Hanning (Hann) window – their sequence sums 
exactly to 1. 

• When synthesizing, initialize a buffer with the length of the resulting 
signal by zeros, then run a cycle:
• For each frame, take spectrum and complete the upper (from N/2+1 … N-1) 

by the symmetry X[k] = X*[N-k]

• Perform IDFT that generates the current frame. 

• Add it to the buffer 

• Move to the next frame, shift the position where signal will be added to the 
buffer by frame overlap. 

#dft_synt 41 / 43



Playing with spectrogram I – filtering 

• Without changes to the spectrogram, the Hanning window can be 
applied either in the analysis (before DFT) or in the synthesis (after 
IDFT)

• However, if spectrogram is modified, it is good to perform the 
windowing on both ends. However, the whole thing needs to be still 
Hanning window, so: 
• Apply sqrt of Hanning before DFT 
• Apply sqrt of Hanning after IDFT 
• sqrt Hanning * sqrt Hanning = Hanning. 

#spectrogram_filtering – deleting part of spectrogram + up to you to 
try anything else 
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Playing with spectrogram II – duration 
modification
• Taking every 2nd frame from the spectrum – shortening 2x – “Ostrava 

accent”

• Repeating every frame – lengthening 2x – “Prague accent”

#spectrogram_duration_modif

The quality of audio is not perfect – the phases would need better 
processing (continuity of phase across frames). 
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Agenda
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• DFT of typical signals

• Properties of DFT

• Some more math on DFT 

• Spectrogram and what can we do with it 

• Summary and “take-home” messages
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SUMMARY

• DFT (computed by FFT) is the basic tool for frequency analysis. 

• Basic truths on signals and spectra:
• Narrow signal <=> wide spectrum 

• Wide (smooth) signal <=> narrow spectrum 

• Periodic signal <=> discrete spectrum 

• Discrete signal <=> periodic spectrum 

• Shifts of signals
• Delay => magnitude spectrum stays the same, phase goes downhill. 

• Advance => magnitude spectrum stays the same, phase goes uphill. 

• For DFT, we need to do circular shifts to stay in 0 … N-1
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SUMMARY II. 

• Spectrogram is evolution of spectrum in time 
• Contains magnitude and phase, only magnitude is shown 

• Lots of tuning can be done by non-linearity (log),  colormaps, and setting brightness 
and contrast of the image. 

• Better frequency or better time resolution, but not both – long vs. short-term 
spectrogram 

• Synthesis of signal from spectrogram 
• Analysis should be done carefully – shift is ½ of the frame-length, Hanning window. 

• Spectrum needs to be completed by the 2nd half before IDFT. 

• In case modifications are done, it’s safer to use sequence of sqrt(Hanning) and 
sqrt(Hanning)

• Filtering is usually done by other means, but spectrogram modifications are 
of great use in machine learning (learned T-F masks, etc). 46 / 43
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