
Spectral analysis II

Honza Černocký, ÚPGM

Please open Python notebook 03_spectral_2

Agenda

• DFT refresher

• DFT of typical signals

• Properties of DFT

• Some more math on DFT

• Spectrogram and what can we do with it

• Summary and “take-home” messages

2 / 43

Discrete Fourier transform (DFT) analysis

• Input: signal x[n] of N samples

• Output: N complex coefficients X[k] providing the information on
• Frequency – index k, corresponds to normalized frequency k/N and regular

frequency k/N Fs. Normalization and de-normalization of frequency involves a
simple division or multiplication by sampling frequency Fs.

• How much ? Magnitude (absolute value, modul) |X[k]|.

• How shifted ? Phase (angle, argument, phase shift) arg X[k].

• Easy to implement by definition but using FFT is much faster
(for N = 2b)

3 / 43

DFT analysis II.

• For real input signals x[n], coefficients X[k] are symmetrical (complex
conjugate X[k] = X*[N-k]:
• |X[k]| = |X[N-k]| and arg X[k] = -arg X[N-k]

• … so that it is enough to store and visualize the spectrum only from
k = 0 to k = N/2. This corresponds to normalized frequencies 0 … ½
and regular frequencies 0 … Fs/2.

• Attention, the number of coefficients to retain is
NOT N/2 but N/2+1 !!!

#dft_anal

4 / 43

DFT synthesis - IDFT

• Input: N complex coefficients X[k]

• Output: N samples of signal xs[n].
• In case we did nothing with the spectrum, xs[n] is exactly the same as x[n].

• Synthesis by DFT involves summing pairs of complex exponentials at k
and N-k running “against each other”, creating one shifted cosine –
see derivation in the last lecture.
• When computing, DFT/FFT can produce very small imaginary components,

better to kill them using np.real().

#dft_synt

5 / 43

Agenda

• DFT refresher

• DFT of typical signals

• Properties of DFT

• Some more math on DFT

• Spectrogram and what can we do with it

• Summary and “take-home” messages

6 / 43

DFT of a D.C. (stejnosměrný) / constant signal

• x[n] = a

• For k=0, the sum is X[0] = Na.

• For everything else, the sum of k “revolutions” of the complex
exponential is zero.

• Intuition check: D.C. has just zero frequency, everything else should
be zero - OK

Very slow signal <=> narrow spectrum

#dft_of_constant
7 / 43

DFT of a pulse (impuls) at time zero

• x[0] = a, otherwise x[n] = 0.

• Only the term for n=0 will produce something - here, the complex
exponential is exp(0) = 1, so X[k] = a for all k’s

• Intuition check: the pulse is very fast (like a click), should contains lots
of frequencies - OK

Very fast signal <=> wide spectrum

#dft_of_pulse
8 / 43

DFT of a shifted pulse (posunutý impuls)

• x[g] = a, otherwise x[n] = 0. g is the position of the pulse.

• Only the term for n=g will produce something - here, the complex
exponential is exp(-2π g k / N), so
• X[k] = a exp(-2π g k / N).
• Magnitude is |X[k] | = a
• Phase is arg (a exp(-2π g k / N)) = -2π g k / N … linear with slope -2π g / N

• For visualization, you might try using np.unwrap to see values of phase
outside of –π … +π.

• Intuition check: the signal only shifted, the magnitudes should not change,
shift should be reflected in phases - OK

#dft_of_shifted_pulse
9 / 43

DFT of a rectangular pulse (pravoúhlý /
obdélníkový impuls)
• x[n] = a for n = 0…g-1, zero otherwise (so it will have g non-zero

samples).

• No derivation (we’ll see this later) but remember that wide signal
should have narrow spectrum and narrow signal should have wide
spectrum …

#dft_of_rectangle

• The function we see is sin(x) / x, so called cardinal sine (kardinální
sinus). We’ll be seeing this a lot …

• For narrow rectangles, the cardinal sine lobes (laloky) seem to be
distorted as we move towards Fs /2 – this is caused by aliasing (more
about it in the lecture on sampling)

10 / 43

DFT of a “symmetrical” rectangular pulse

• Trying to make the rectangle symmetrical so that the phase is not
shifted.

• Will work only for odd (liché) g by setting the same amount of
samples for negative n as for positive n. For example, for g = 5, set
x[-2 … +2] = a

• However, we can not work with negative indices, so we need to
consider the end of input buffer as negative indices …
x[0 … 2] = a, x[N-2] = a, x[N-1] = a

#dft_of_symmetrical_rectangle

• The phase is either 0 or ±π, this means that this spectrum is real – just
positive or negative numbers !

Symmetrical signal <=> real spectrum 11 / 43

DFT of cosine with the period of N samples

• We could run the DFT analysis, but let’s work the “lazy” way:
• Split the cosine using our well known formula

• Write the synthesis formula next to it and try to see if we can find respective
coefficients

• We easily find
• The next one we could find is X[-1] which is not there (can use only indices

from 0 … N-1) but we already know about the symmetry:

• Coefficients X[1] and X[N-1] for a cosine are almost the same, except
for the phase

#dft_of_cos1 - OMG, what’s going on with the phase ???
12 / 43

DFT of cosine with more periods in N samples

• We could find the values of coefficients exactly in the same way, just
looking at index g instead of 1

• Exactly the same, only the index will change:

• Magnitudes are the same, arguments opposite:

#dft_of_cos_multiperiod

13 / 43

DFT of a cosine that does not fit exactly N
samples …
• In real life, we can not say “I’m going to analyze only signals with

period od 128 samples”. We obtain an input and we have to go …

• So it can happen (and it regularly happens) that our cos is “badly cut”.

• Remember: any sharp edge in a signal generates high frequencies.

#dft_of_general_cos

For a period that does not fit into N exactly k times (“wrong cut” of
cos), the spectrum is “leaking” to neighboring frequencies.

14 / 43

Why ? Because we’re windowing our signal …

• x[n] = w[n] s[n], where w[n] is the window function.

• In case of multiplication of signals in time, we’ll have a convolution
(konvoluce) of spectra in frequency.

• More about convolution in the filtering lecture, for cosine signal, it
simply means, that the spectrum of w[n] shifts to its frequency

• So what is the spectrum of our window ?
• Analyzing N samples is not enough, we’d get a constant (and we know it’s

spectrum is a single coefficient).
• Increasing N to more samples by zero padding: 256 -> Nfft = 4096 (16x)
• Zoom only on low frequencies to see details … and showing only magnitude
• … also showing where are the points of length N DFT !

#dft_rectangle_zeropad
15 / 43

Better frequency resolution for a “good”
cosine

#dft_of_cos_multiperiod_detail

• Here, we see the cardinal sine, but the frequencies of the original DFT
sample it exactly at zero values !

16 / 43

Better frequency resolution for a “bad” cosine

#dft_of_cos_generalcos_detail

• We see the cardinal sine, and we are not lucky, so the theoretical 1
line “leaks” into neighboring frequencies.

• We can try to fix it by another window … Hamming

#dft_of_generalcos_Hamming

• Less “messy” spectrum than the rectangular window (the edges
resulting from “bad cutting” are attenuated) but also worse
frequency resolution.

• Remember: smoother signal <=> wider spectrum.
17 / 43

DFT of something periodic

• Periodic rectangular pulses with period Npulse

• Fitting N samples with an integer number of periods

#dft_pulsetrain

• Compared to the spectrum of one rectangular pulse, the spectrum is
sampled.

• The positions of samples correspond to 1/ Npulse (normalized
frequency) and Fs / Npulse (regular frequency).

Periodic signal <=> sampled “discrete” spectrum
18 / 43

DFT of a periodic signal with a “wild” period

• Periodic rectangular pulses with period Npulse

• Not fitting N samples with an integer number of periods (which is the
usual situation …)

#dft_pulsetrain_general

• It does something but there is a brutal “leaking” into neighboring
frequencies impacting also the shape of the spectrum.

• However, this is what we’re doing most of the time – see the speech
signal #dft_anal at the beginning of this lecture

In case we know the period, or are able to measure it precisely, DTFT
might be a safer option.

19 / 43

Agenda

• DFT refresher

• DFT of typical signals

• Properties of DFT

• Some more math on DFT

• Spectrogram and what can we do with it

• Summary and “take-home” messages

20 / 43

Scaling

• If the signal is multiplied with a constant, y[n] = a x[n], the DFT
coefficients will be Y[k] = a X[k]

• Proof:

#dft_scaling

21 / 43

Additivity

• If
• DFT for signal x1[n] is X1[k]

• and DFT for signal x2[n] is X2[k]

• Then, if we sum the signals: y[n] = x1[n] + x2[n]

• The resulting DFT will be also the sum of the original ones:
Y[k] = X1[k] + X2[k]

• Proof:

#dft_additivity

… why don’t the values of phases match at some points ?
22 / 43

Linearity

• Scaling and additivity together

• If DFT for signal x1[n] is X1[k] and DFT for signal x2[n] is X2[k]

• Then, if we do a weighted sum the signals:
y[n] = a1 x1[n] + a2 x2[n]

• the resulting spectrum will be exactly the same weighted
combination of the original ones: Y[k] = a1 X1[k] + a2 X2[k]

#dft_linearity

Linearity is absolutely crucial in many applications, and we

intentionally use non-linearities in others – neural networks.
23 / 43

Shifts of short signals

• Consider a relatively short signal x [n] that has DFT X[k].

• What happens if this signal is shifted to the right (delayed) by m
samples: y[n] = x[n-m] (let’s consider that the signal does not leave
the interval 0 … N-1)

• The complex exponentials “seeing” the signal will be m samples
“older”, so that we can re-write the DFT as

24 / 43

• The resulting coefficient is the original one multiplied with a
“correction factor”:

• The magnitude of the correction is 1, so

• The phase of the correction is shifted by a linear function.

The magnitude spectrum will be the same, the phase one will be
inclined “downhill” for delay and “uphill” for advancing the signal.

#dft_shifted_lin

25 / 43

Shift of a signal that covers the whole period

• Consider a longer signal, for example a cosine nicely fitting in N
samples

• When shifted, “gaps” appear, and creates edges generating unwanted
frequencies …

#dft_shifted_lin_long

Ooops, that’s a mess 

26 / 43

Correct way to shift signals for DFT …

• Remember: we need to always stay in the buffer 0 … N-1

• In case m samples of the signal are pushed out at the end, they need
to return to the beginning.

27 / 43

Circular shift mathematically

• Modulo N function always returns values from 0 … N-1

• Implementing circular shift by modulo indexing:
y[n] = x [modN (n-m)]

• For such a circular shift, we can safely use the correction computed
above - the resulting coefficient is the original one multiplied with a
“correction factor”:
• The magnitude of the correction is 1, so

• The phase of the correction is shifted by a linear function.

The magnitude spectrum will be the same, the phase one will be
inclined “downhill” for delay and “uphill” for advancing the signal.
#dft_shift_circular

28 / 43

Agenda

• DFT refresher

• DFT of typical signals

• Properties of DFT

• Some more math on DFT

• Spectrogram and what can we do with it

• Summary and “take-home” messages

29 / 43

Orthogonality

• For 2D, we can check the orthogonality (kolmost) by hand …

• Mathematically, checking by dot-product
• [1 0] [0 1]T = 1 x 0 + 0 x 1 = 0 orthogonal

• [1 0] [1 1]T = 1 x 0 + 1 x 1 = 1 not orthogonal

• [1 1] [-1 1]T = 1 x (-1) + 1 x 1 = 0 orthogonal

30 / 43

Are DFT bases orthogonal ?

• We’ll check it by a standard dot-product over N samples.

• But we have complex bases, so need to do complex conjugation (as
for projection)

• For DFT bases, we have

DFT bases ARE orthogonal 31 / 43

Are DFT bases normal ?

• Norm of each basis must be 1 …

• For DFT:

• The norm is not 1, but N, so we need to correct in the IDFT when
synthesizing the signal:

• Remember the multiplication by N when computing coefficients for a
cosine !

After IDFT fix, DFT bases are normal, so they are also orthonormal.
32 / 43

DFT extending beyond k=0 … N-1 – periodicity

• We have defined DFT to strictly compute the spectrum for k=0 … N-1, this
corresponds to
• Normalized frequencies from 0 to almost 1 (precisely (N-1) / N)

• Regular frequencies from 0 to almost Fs (precisely Fs(N-1) / N)

• And we usually visualize it only till N/2 (i.e. till ½ in normalized frequencies and
Fs/2 in regular ones).

• What happens if we go beyond interval k=0 … N-1 ?

• Augmenting k by a multiple of the number of samples N:

33 / 43

• DFT is periodic with N samples. In frequencies, this corresponds to
periodicity
• With period of 1 (normalized frequencies)

• With period of Fs (regular frequencies)

• This is the “mathematical” proof of periodicity, we will see another
one in the lecture on sampling !

• We can do a similar proof for DTFT

#dft_periodicity

34 / 43

Agenda

• DFT refresher

• DFT of typical signals

• Properties of DFT

• Some more math on DFT

• Spectrogram and what can we do with it

• Summary and “take-home” messages

35 / 43

Spectrogram

• We want to see the evolution of spectrum over time.

• For our speech signal, want something like this:

• Calling #spectrogram_blackbox without knowing what it really does.

• We better learn what the spectrogram does exactly 36 / 43

Pre-processing of the signal before
computation
• Division of a long signal into short segments – frames (rámce)

• Segmentation without overlap

• Segmentation with overlap (more usual)

37 / 43

Windowing the frames and running DFT for
all …
• Window each frame by a selected window

• Rectangular – good frequency selectivity, more mess at higher frequencies.

• Hamming – worse frequency selectivity, less mess at higher frequencies.

• Hanning (or Hann) window – a sequence overlapping by N/2 sums up to 1 –
see later. Beware of confusion ‘mm’ vs ‘nn’ …

• If needed, zero-pad to reach the desired number of point Nfft.

• As usual, select only 0… N/2, resp 0… Nfft/2 points.

• Visualize

#spectrogram

38 / 43

More on spectrogram visualization

• We usually take the log of so called power spectral density – square of
spectrum 10 log10 |X[k]|2 and claim it is in decibel [dB]

• Selection of colormap …

• Playing with brightness,
contrast, etc …

39 / 43

Short-term vs long-term spectrogram

• Wanted: more details in frequency => set longer frame length =>
however, less precision in time (averaging details over longer time…) –
long-term spectrogram

• Wanted: more details in time => set shorter frame length (eventually
with more FFT points to have a nice figure) => however, less precision
in frequency (the frame “sees” less signal) – short-term spectrogram

• Wanted: more frames per second => set more overlap (less frame
shift) => however, will not be able to detect short events (still
averaged by the frame length…

#spectrogram_long_short_term

Setting good spectrogram parameters is a tricky business and there is
no universal solution – ask colleagues and then tune the parameters.

40 / 43

Synthesizing signal from spectrogram

• Need to be careful with the analysis – define frames with ½ frame
overlap and use Hanning (Hann) window – their sequence sums
exactly to 1.

• When synthesizing, initialize a buffer with the length of the resulting
signal by zeros, then run a cycle:
• For each frame, take spectrum and complete the upper (from N/2+1 … N-1)

by the symmetry X[k] = X*[N-k]

• Perform IDFT that generates the current frame.

• Add it to the buffer

• Move to the next frame, shift the position where signal will be added to the
buffer by frame overlap.

#dft_synt 41 / 43

Playing with spectrogram I – filtering

• Without changes to the spectrogram, the Hanning window can be
applied either in the analysis (before DFT) or in the synthesis (after
IDFT)

• However, if spectrogram is modified, it is good to perform the
windowing on both ends. However, the whole thing needs to be still
Hanning window, so:
• Apply sqrt of Hanning before DFT
• Apply sqrt of Hanning after IDFT
• sqrt Hanning * sqrt Hanning = Hanning.

#spectrogram_filtering – deleting part of spectrogram + up to you to
try anything else

42 / 43

Playing with spectrogram II – duration
modification
• Taking every 2nd frame from the spectrum – shortening 2x – “Ostrava

accent”

• Repeating every frame – lengthening 2x – “Prague accent”

#spectrogram_duration_modif

The quality of audio is not perfect – the phases would need better
processing (continuity of phase across frames).

43 / 43

Agenda

• DFT refresher

• DFT of typical signals

• Properties of DFT

• Some more math on DFT

• Spectrogram and what can we do with it

• Summary and “take-home” messages

44 / 43

SUMMARY

• DFT (computed by FFT) is the basic tool for frequency analysis.

• Basic truths on signals and spectra:
• Narrow signal <=> wide spectrum

• Wide (smooth) signal <=> narrow spectrum

• Periodic signal <=> discrete spectrum

• Discrete signal <=> periodic spectrum

• Shifts of signals
• Delay => magnitude spectrum stays the same, phase goes downhill.

• Advance => magnitude spectrum stays the same, phase goes uphill.

• For DFT, we need to do circular shifts to stay in 0 … N-1

45

SUMMARY II.

• Spectrogram is evolution of spectrum in time
• Contains magnitude and phase, only magnitude is shown

• Lots of tuning can be done by non-linearity (log), colormaps, and setting brightness
and contrast of the image.

• Better frequency or better time resolution, but not both – long vs. short-term
spectrogram

• Synthesis of signal from spectrogram
• Analysis should be done carefully – shift is ½ of the frame-length, Hanning window.

• Spectrum needs to be completed by the 2nd half before IDFT.

• In case modifications are done, it’s safer to use sequence of sqrt(Hanning) and
sqrt(Hanning)

• Filtering is usually done by other means, but spectrogram modifications are
of great use in machine learning (learned T-F masks, etc). 46 / 43

	Slide 1: Spectral analysis II
	Slide 2: Agenda
	Slide 3: Discrete Fourier transform (DFT) analysis
	Slide 4: DFT analysis II.
	Slide 5: DFT synthesis - IDFT
	Slide 6: Agenda
	Slide 7: DFT of a D.C. (stejnosměrný) / constant signal
	Slide 8: DFT of a pulse (impuls) at time zero
	Slide 9: DFT of a shifted pulse (posunutý impuls)
	Slide 10: DFT of a rectangular pulse (pravoúhlý / obdélníkový impuls)
	Slide 11: DFT of a “symmetrical” rectangular pulse
	Slide 12: DFT of cosine with the period of N samples
	Slide 13: DFT of cosine with more periods in N samples
	Slide 14: DFT of a cosine that does not fit exactly N samples …
	Slide 15: Why ? Because we’re windowing our signal …
	Slide 16: Better frequency resolution for a “good” cosine
	Slide 17: Better frequency resolution for a “bad” cosine
	Slide 18: DFT of something periodic
	Slide 19: DFT of a periodic signal with a “wild” period
	Slide 20: Agenda
	Slide 21: Scaling
	Slide 22: Additivity
	Slide 23: Linearity
	Slide 24: Shifts of short signals
	Slide 25
	Slide 26: Shift of a signal that covers the whole period
	Slide 27: Correct way to shift signals for DFT …
	Slide 28: Circular shift mathematically
	Slide 29: Agenda
	Slide 30: Orthogonality
	Slide 31: Are DFT bases orthogonal ?
	Slide 32: Are DFT bases normal ?
	Slide 33: DFT extending beyond k=0 … N-1 – periodicity
	Slide 34
	Slide 35: Agenda
	Slide 36: Spectrogram
	Slide 37: Pre-processing of the signal before computation
	Slide 38: Windowing the frames and running DFT for all …
	Slide 39: More on spectrogram visualization
	Slide 40: Short-term vs long-term spectrogram
	Slide 41: Synthesizing signal from spectrogram
	Slide 42: Playing with spectrogram I – filtering
	Slide 43: Playing with spectrogram II – duration modification
	Slide 44: Agenda
	Slide 45: SUMMARY
	Slide 46: SUMMARY II.

