Spectral analysis II

Honza Černocký, ÚPGM

Please open Python notebook 03_spectral_2

Agenda

- DFT refresher
- DFT of typical signals
- Properties of DFT
- Some more math on DFT
- Spectrogram and what can we do with it
- Summary and "take-home" messages

Discrete Fourier transform (DFT) analysis

$$X[k] = \sum_{n=0}^{N-1} x[n]e^{-j2\pi \frac{k}{N}n}$$

- Input: signal x[n] of N samples
- Output: N complex coefficients X[k] providing the information on
 - Frequency index k, corresponds to normalized frequency k/N and regular frequency k/N F_s . Normalization and de-normalization of frequency involves a simple division or multiplication by sampling frequency F_s .
 - How much? Magnitude (absolute value, modul) |X[k]|.
 - How shifted ? Phase (angle, argument, phase shift) arg X[k].
- Easy to implement by definition but using FFT is much faster (for $N = 2^b$)

DFT analysis II.

- For real input signals x[n], coefficients X[k] are symmetrical (complex conjugate $X[k] = X^*[N-k]$:
 - |X[k]| = |X[N-k]| and $\arg X[k] = -\arg X[N-k]$
- ... so that it is enough to store and visualize the spectrum only from k = 0 to k = N/2. This corresponds to normalized frequencies $0 \dots 1/2$ and regular frequencies $0 \dots F_s/2$.
- Attention, the number of coefficients to retain is
 NOT N/2 but N/2+1!!!

#dft_anal

DFT synthesis - IDFT

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{+j2\pi \frac{k}{N}n}$$

- Input: N complex coefficients X[k]
- Output: N samples of signal $x_s[n]$.
 - In case we did nothing with the spectrum, $x_s[n]$ is exactly the same as x[n].
- Synthesis by DFT involves summing pairs of complex exponentials at k and N-k running "against each other", creating one shifted cosine see derivation in the last lecture.
 - When computing, DFT/FFT can produce very small imaginary components, better to kill them using np.real().

#dft_synt

Agenda

- DFT refresher
- DFT of typical signals
- Properties of DFT
- Some more math on DFT
- Spectrogram and what can we do with it
- Summary and "take-home" messages

DFT of a D.C. (stejnosměrný) / constant signal

• x[n] = a

$$X[k] = \sum_{n=0}^{N-1} ae^{-j2\pi \frac{k}{N}n}$$

- For k=0, the sum is X[0] = Na.
- For everything else, the sum of *k* "revolutions" of the complex exponential is zero.
- Intuition check: D.C. has just zero frequency, everything else should be zero - OK

Very slow signal <=> narrow spectrum

DFT of a pulse (impuls) at time zero

• x[0] = a, otherwise x[n] = 0.

$$X[k] = \sum_{n=0}^{N-1} x[n]e^{-j2\pi\frac{k}{N}n} = ae^{-j2\pi\frac{k}{N}0} = ae^0 = a$$

- Only the term for n=0 will produce something here, the complex exponential is $\exp(0) = 1$, so X[k] = a for all k's
- Intuition check: the pulse is very fast (like a click), should contains lots of frequencies OK

Very fast signal <=> wide spectrum

DFT of a shifted pulse (posunutý impuls)

• x[g] = a, otherwise x[n] = 0. g is the position of the pulse.

$$X[k] = \sum_{n=0}^{N-1} x[n]e^{-j2\pi \frac{k}{N}n} = ae^{-j2\pi \frac{k}{N}g}$$

- Only the term for n=g will produce something here, the complex exponential is $\exp(-2\pi g \ k \ / \ N)$, so
 - $X[k] = a \exp(-2\pi g \, k \, / \, N)$.
 - Magnitude is |*X*[*k*] | = *a*
 - Phase is arg $(a \exp(-2\pi g k / N)) = -2\pi g k / N$... linear with slope $-2\pi g / N$
- For visualization, you might try using np.unwrap to see values of phase outside of $-\pi$... $+\pi$.
- Intuition check: the signal only shifted, the magnitudes should not change, shift should be reflected in phases - OK

#dft_of_shifted_pulse

DFT of a rectangular pulse (pravoúhlý / obdélníkový impuls)

- x[n] = a for n = 0...g-1, zero otherwise (so it will have g non-zero samples).
- No derivation (we'll see this later) but remember that wide signal should have narrow spectrum and narrow signal should have wide spectrum ...

#dft_of_rectangle

- The function we see is sin(x) / x, so called **cardinal sine** (kardinální sinus). We'll be seeing this a lot ...
- For narrow rectangles, the cardinal sine lobes (laloky) seem to be distorted as we move towards $F_s/2$ this is caused by **aliasing** (more about it in the lecture on sampling)

DFT of a "symmetrical" rectangular pulse

- Trying to make the rectangle symmetrical so that the phase is not shifted.
- Will work only for odd (liché) g by setting the same amount of samples for negative n as for positive n. For example, for g = 5, set $x[-2 \dots +2] = a$
- However, we can not work with negative indices, so we need to consider the end of input buffer as negative indices ... x[0...2] = a, x[N-2] = a, x[N-1] = a

#dft_of_symmetrical_rectangle

• The phase is either 0 or $\pm \pi$, this means that this spectrum is real – just positive or negative numbers !

DFT of cosine with the period of N samples

$$x[n] = A\cos(2\pi \frac{1}{N}n + \phi)$$

- We could run the DFT analysis, but let's work the "lazy" way:
 - $\cos \alpha = \frac{e^{j\alpha} + e^{-j\alpha}}{2}$ Split the cosine using our well known formula

$$x[n] = \frac{A}{2}e^{j\phi}e^{j2\pi\frac{1}{N}n} + \frac{A}{2}e^{-j\phi}e^{-j2\pi\frac{1}{N}n}$$

- Write the synthesis formula next to it and try to see if we can find respective coefficients $x_s[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{+j2\pi \frac{k}{N}n}$
- We easily find $X[1] = N\frac{A}{2}e^{j\phi}$
- The next one we could find is X[-1] which is not there (can use only indices from 0 ... N-1) but we already know about the symmetry: X[-1] = X[N-1] $X[N-1] = N\frac{A}{2}e^{-j\phi}$
- Coefficients X[1] and X[N-1] for a cosine are almost the same, except for the phase $|X[1]| = |X[N-1]| = N\frac{A}{2}$ $\arg X[1] = \phi$, $\arg X[N-1] = -\phi$ $X[1] = X^*[N-1]$

#dft of cos1 - OMG, what's going on with the phase ???

DFT of cosine with more periods in N samples

$$x[n] = A\cos(2\pi \frac{g}{N}n + \phi)$$

- We could find the values of coefficients exactly in the same way, just looking at index g instead of 1
- Exactly the same, only the index will change: $X[g] = N \frac{A}{2} e^{j\phi}$

$$X[-g] = X[N-g] \qquad X[N-g] = N\frac{A}{2}e^{-j\phi}$$

• Magnitudes are the same, arguments opposite:

$$|X[g]| = |X[N-g]| = N\frac{A}{2} \qquad \arg X[g] = \phi, \qquad \arg X[N-g] = -\phi \qquad \qquad X[g] = X^{\star}[N-g]$$

#dft_of_cos_multiperiod

DFT of a cosine that does not fit exactly *N* samples ...

- In real life, we can not say "I'm going to analyze only signals with period od 128 samples". We obtain an input and we have to go ...
- So it can happen (and it regularly happens) that our cos is "badly cut".
- Remember: any sharp edge in a signal generates high frequencies.

```
#dft_of_general_cos
```

For a period that does not fit into N exactly k times ("wrong cut" of cos), the spectrum is "leaking" to neighboring frequencies.

Why? Because we're windowing our signal ...

- x[n] = w[n] s[n], where w[n] is the window function.
- In case of multiplication of signals in time, we'll have a **convolution** (konvoluce) of spectra in frequency.
- More about convolution in the filtering lecture, for cosine signal, it simply means, that the spectrum of w[n] shifts to its frequency
- So what is the spectrum of our window?
 - Analyzing N samples is not enough, we'd get a constant (and we know it's spectrum is a single coefficient).
 - Increasing N to more samples by zero padding: 256 -> N_{fft} = 4096 (16x)
 - Zoom only on low frequencies to see details ... and showing only magnitude
 - ... also showing where are the points of length N DFT!

Better frequency resolution for a "good" cosine

$$x[n] = A\cos(2\pi \frac{g}{N}n + \phi)$$

#dft of cos multiperiod detail

 Here, we see the cardinal sine, but the frequencies of the original DFT sample it exactly at zero values!

Better frequency resolution for a "bad" cosine

#dft_of_cos_generalcos_detail

- We see the cardinal sine, and we are not lucky, so the theoretical 1 line "leaks" into neighboring frequencies.
- We can try to fix it by another window ... Hamming

$$w[n] = 0.54 - 0.46 \cos \frac{2\pi n}{N-1}$$
 for $0 \le n \le N-1$, 0 elsewhere

#dft_of_generalcos_Hamming

- Less "messy" spectrum than the rectangular window (the edges resulting from "bad cutting" are attenuated) but also worse frequency resolution.
- Remember: smoother signal <=> wider spectrum.

DFT of something periodic

- Periodic rectangular pulses with period N_{pulse}
- Fitting N samples with an integer number of periods

#dft_pulsetrain

- Compared to the spectrum of one rectangular pulse, the spectrum is sampled.
- The positions of samples correspond to $1/N_{pulse}$ (normalized frequency) and F_s/N_{pulse} (regular frequency).

DFT of a periodic signal with a "wild" period

- Periodic rectangular pulses with period N_{pulse}
- Not fitting N samples with an integer number of periods (which is the usual situation ...)

#dft_pulsetrain_general

- It does something but there is a brutal "leaking" into neighboring frequencies impacting also the shape of the spectrum.
- However, this is what we're doing most of the time see the speech signal #dft_anal at the beginning of this lecture

In case we know the period, or are able to measure it precisely, DTFT might be a safer option.

Agenda

- DFT refresher
- DFT of typical signals
- Properties of DFT
- Some more math on DFT
- Spectrogram and what can we do with it
- Summary and "take-home" messages

Scaling

- If the signal is multiplied with a constant, y[n] = a x[n], the DFT coefficients will be Y[k] = a X[k]
- Proof:

$$X[k] = \sum_{n=0}^{N-1} ax[n]e^{-j2\pi\frac{k}{N}n} = a\sum_{n=0}^{N-1} x[n]e^{-j2\pi\frac{k}{N}n} = aX[k]$$

#dft_scaling

Additivity

- If
 - DFT for signal $x_1[n]$ is $X_1[k]$
 - and DFT for signal $x_2[n]$ is $X_2[k]$
- Then, if we sum the signals: $y[n] = x_1[n] + x_2[n]$
- The resulting DFT will be also the sum of the original ones: $Y[k] = X_1[k] + X_2[k]$
- Proof:

$$X[k] = \sum_{n=0}^{N-1} (x_1[n] + x_2[n])e^{-j2\pi\frac{k}{N}n} = \sum_{n=0}^{N-1} x_1[n]e^{-j2\pi\frac{k}{N}n} + \sum_{n=0}^{N-1} x_2[n]e^{-j2\pi\frac{k}{N}n} = X_1[k] + X_2[k]$$

#dft_additivity

... why don't the values of phases match at some points?

Linearity

- Scaling and additivity together
- If DFT for signal $x_1[n]$ is $X_1[k]$ and DFT for signal $x_2[n]$ is $X_2[k]$
- Then, if we do a **weighted sum** the signals: $y[n] = a_1 x_1[n] + a_2 x_2[n]$
- the resulting spectrum will be exactly the same weighted combination of the original ones: $Y[k] = a_1 X_1[k] + a_2 X_2[k]$

$$X[k] = \sum_{n=0}^{N-1} (a_1 x_1[n] + a_2 x_2[n]) e^{-j2\pi \frac{k}{N}n} = a_1 \sum_{n=0}^{N-1} x_1[n] e^{-j2\pi \frac{k}{N}n} + a_2 \sum_{n=0}^{N-1} x_2[n] e^{-j2\pi \frac{k}{N}n} = a_1 X_1[k] + a_1 X_2[k]$$

#dft_linearity

Linearity is absolutely crucial in many applications, and we intentionally use non-linearities in others – neural networks.

Shifts of short signals

- Consider a relatively short signal x[n] that has DFT X[k].
- What happens if this signal is shifted to the right (delayed) by m samples: y[n] = x[n-m] (let's consider that the signal does not leave the interval $0 \dots N-1$)
- The complex exponentials "seeing" the signal will be *m* samples "older", so that we can re-write the DFT as

$$Y[k] = \sum_{n=0}^{N-1} y[n] e^{-j2\pi \frac{k}{N}n} = \sum_{n=0}^{N-1} x[n-m] e^{-j2\pi \frac{k}{N}n} = \sum_{n=0}^{N-1} x[n] e^{-j2\pi \frac{k}{N}(n+m)} = \sum_{n=0}^{N-1} x[n] e^{-j2\pi \frac{k}{N}(n+m)} = \sum_{n=0}^{N-1} x[n] e^{-j2\pi \frac{k}{N}n} e^{-j2\pi \frac{k}{N}n} e^{-j2\pi \frac{k}{N}m} = e^{-j2\pi \frac{k}{N}m} \sum_{n=0}^{N-1} x[n] e^{-j2\pi \frac{k}{N}n} = e^{-j2\pi \frac{k}{N}m} X[k]$$

- The resulting coefficient is the original one multiplied with a "correction factor": $Y[k] = e^{-j2\pi \frac{k}{N}m}X[k]$
 - The magnitude of the correction is 1, so $|Y[k]| = |e^{-j2\pi\frac{k}{N}m}| \ |X[k]| = |X[k]|$
 - The phase of the correction is shifted by a linear function.

$$\arg Y[k] = \arg e^{-j2\pi \frac{k}{N}m} + \arg X[k] = \arg X[k] - 2\pi \frac{k}{N}m$$

The magnitude spectrum will be the same, the phase one will be inclined "downhill" for delay and "uphill" for advancing the signal.

#dft_shifted_lin

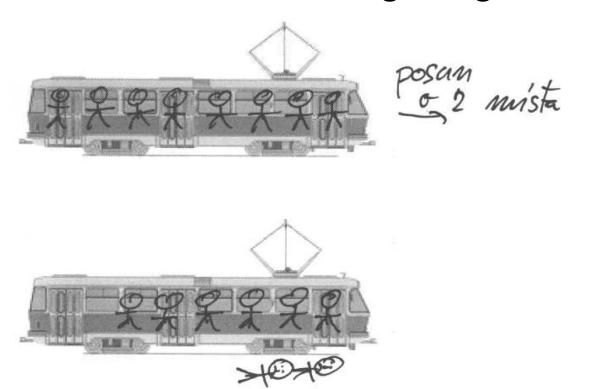
Shift of a signal that covers the whole period

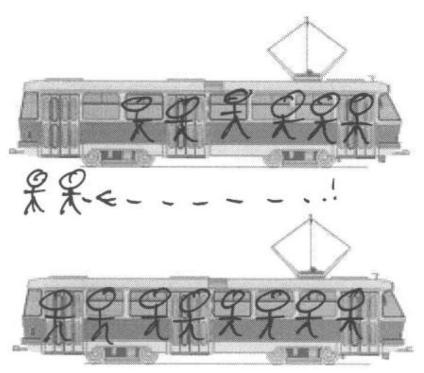
- Consider a longer signal, for example a cosine nicely fitting in N samples
- When shifted, "gaps" appear, and creates edges generating unwanted frequencies ...

```
#dft_shifted_lin_long
Ooops, that's a mess 🙁
```

Correct way to shift signals for DFT ...

- Remember: we need to always stay in the buffer 0 ... N-1
- In case *m* samples of the signal are pushed out at the end, they need to return to the beginning.





Circular shift mathematically

- Modulo N function always returns values from 0 ... N-1
- Implementing circular shift by modulo indexing: $y[n] = x [mod_N (n-m)]$
- For such a circular shift, we can safely use the correction computed above the resulting coefficient is the original one multiplied with a "correction factor": $Y[k] = e^{-j2\pi \frac{k}{N}m}X[k]$
 - The magnitude of the correction is 1, so $|Y[k]| = |e^{-j2\pi \frac{k}{N}m}| |X[k]| = |X[k]|$
 - The phase of the correction is shifted by a linear function.

$$\arg Y[k] = \arg e^{-j2\pi \frac{k}{N}m} + \arg X[k] = \arg X[k] - 2\pi \frac{k}{N}m$$

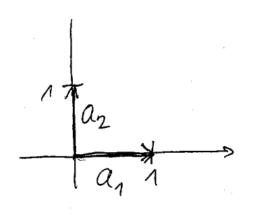
The magnitude spectrum will be the same, the phase one will be inclined "downhill" for delay and "uphill" for advancing the signal.

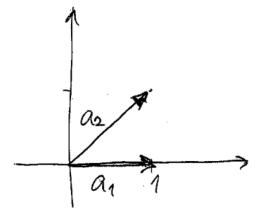
Agenda

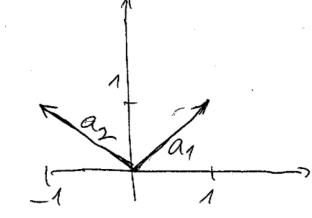
- DFT refresher
- DFT of typical signals
- Properties of DFT
- Some more math on DFT
- Spectrogram and what can we do with it
- Summary and "take-home" messages

Orthogonality

• For 2D, we can check the orthogonality (kolmost) by hand ...







- Mathematically, checking by dot-product
 - $[1 \ 0] [0 \ 1]^T = 1 \times 0 + 0 \times 1 = 0$ orthogonal
 - $[1 \ 0] [1 \ 1]^T = 1 \times 0 + 1 \times 1 = 1$ not orthogonal
 - $[1 \ 1] [-1 \ 1]^T = 1 \times (-1) + 1 \times 1 = 0$ orthogonal

Are DFT bases orthogonal?

• We'll check it by a standard dot-product over N samples.

$$c = \sum_{n=0}^{N-1} a_k[n]a_l[n] = 0, \text{ for } k \neq l$$

• But we have complex bases, so need to do complex conjugation (as for projection) N^{-1}

tion)
$$c = \sum_{n=0}^{N-1} a_k[n] a_l^{\star}[n] = 0, \text{ for } k \neq l$$

For DFT bases, we have

$$c = \sum_{n=0}^{N-1} e^{-j2\pi \frac{k}{N}n} e^{-(-j2\pi \frac{k}{N}l)} = \sum_{n=0}^{N-1} e^{j2\pi \frac{l-k}{N}n} = 0, \quad \text{for } k \neq l$$

Are DFT bases normal?

Norm of each basis must be 1 ...

$$||a[n]||_2 = \sum_{n=0}^{N-1} |a[n]|^2$$

• For DFT:

$$||a[n]||_2 = \sum_{n=0}^{N-1} |e^{+j2\pi \frac{k}{N}n}|^2 = \sum_{n=0}^{N-1} 1 = N$$

• The norm is not 1, but N, so we need to correct in the IDFT when synthesizing the signal: $x[n] = \frac{1}{N} \sum_{i=0}^{N-1} X[k] e^{+j2\pi \frac{k}{N}n}$

• Remember the multiplication by N when computing coefficients for a cosine ! $|X[g]| = |X[N-g]| = N\frac{A}{2}$

After IDFT fix, DFT bases are normal, so they are also orthonormal. $_{32/43}$

DFT extending beyond k=0...N-1 — periodicity

- We have defined DFT to strictly compute the spectrum for $k=0 \dots N-1$, this corresponds to
 - Normalized frequencies from 0 to almost 1 (precisely (N-1) / N)
 - Regular frequencies from 0 to almost F_s (precisely $F_s(N-1) / N$)
 - And we usually visualize it only till N/2 (i.e. till ½ in normalized frequencies and $F_s/2$ in regular ones).
- What happens if we go beyond interval $k=0 \dots N-1$?
- Augmenting k by a multiple of the number of samples N:

$$X[k+gN] = \sum_{n=0}^{N-1} x[n] e^{-j2\pi \frac{k+gN}{N}n} = \sum_{n=0}^{N-1} x[n] e^{-j2\pi (\frac{k}{N} + \frac{gN}{N})n} \sum_{n=0}^{N-1} x[n] e^{-j2\pi \frac{k}{N}n} e^{-j2\pi \frac{gN}{N}n} = \sum_{n=0}^{N-1} x[n] e^{-j$$

$$\sum_{n=0}^{N-1} x[n]e^{-j2\pi\frac{k}{N}n}e^{-j2\pi gn} = \sum_{n=0}^{N-1} x[n]e^{-j2\pi\frac{k}{N}n}1 = X[k]$$

- DFT is periodic with *N* samples. In frequencies, this corresponds to periodicity
 - With period of 1 (normalized frequencies)
 - With period of F_s (regular frequencies)
- This is the "mathematical" proof of periodicity, we will see another one in the lecture on sampling!
- We can do a similar proof for DTFT

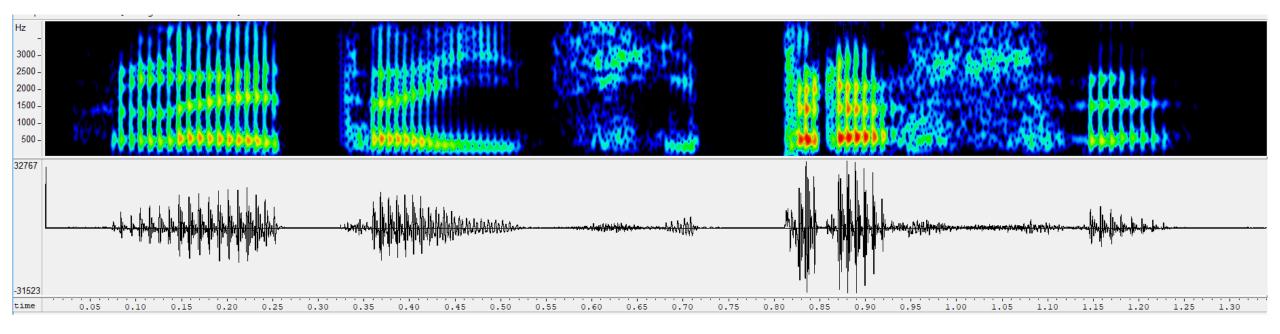
$$\begin{split} \tilde{X}(e^{j(\omega+g2\pi)}) &= \sum_{n=0}^{N-1} x[n] e^{-j(\omega+g2\pi)n} = \sum_{n=0}^{N-1} x[n] e^{-j(\omega n+g2\pi n)} = \\ &\sum_{n=0}^{N-1} x[n] e^{-j\omega n} e^{-jgn2\pi} = \sum_{n=0}^{N-1} x[n] e^{-j\omega n} 1 = \tilde{X}(e^{j\omega}) \end{split}$$

Agenda

- DFT refresher
- DFT of typical signals
- Properties of DFT
- Some more math on DFT
- Spectrogram and what can we do with it
- Summary and "take-home" messages

Spectrogram

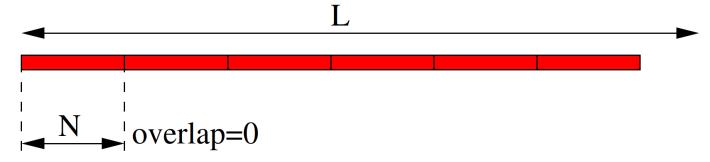
- We want to see the evolution of spectrum over time.
- For our speech signal, want something like this:



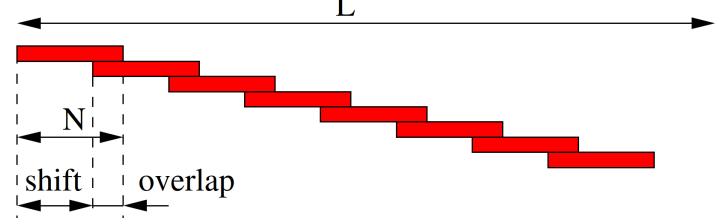
- Calling #spectrogram_blackbox without knowing what it really does.
- We better learn what the spectrogram does exactly

Pre-processing of the signal before computation

- Division of a long signal into short segments frames (rámce)
- Segmentation without overlap



Segmentation with overlap (more usual)



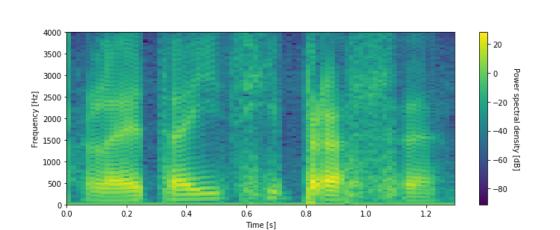
Windowing the frames and running DFT for all ...

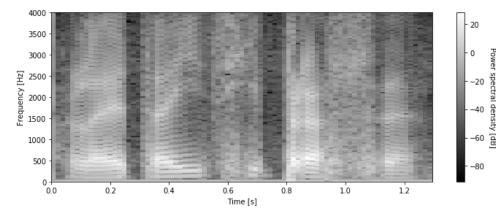
- Window each frame by a selected window
 - Rectangular good frequency selectivity, more mess at higher frequencies.
 - Hamming worse frequency selectivity, less mess at higher frequencies.
 - Hanning (or Hann) window a sequence overlapping by N/2 sums up to 1 see later. Beware of confusion 'mm' vs 'nn' ...
- If needed, zero-pad to reach the desired number of point N_{fft} .
- As usual, select only 0... N/2, resp 0... $N_{fft}/2$ points.
- Visualize

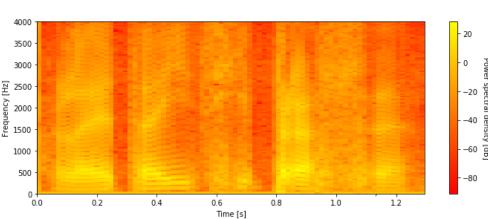
#spectrogram

More on spectrogram visualization

- We usually take the log of so called power spectral density square of spectrum 10 $\log_{10} |X[k]|^2$ and claim it is in decibel [dB]
- Selection of colormap ...
- Playing with brightness, contrast, etc ...







Short-term vs long-term spectrogram

- Wanted: more details in frequency => set longer frame length => however, less precision in time (averaging details over longer time...) – long-term spectrogram
- Wanted: more details in time => set shorter frame length (eventually with more FFT points to have a nice figure) => however, less precision in frequency (the frame "sees" less signal) – short-term spectrogram
- Wanted: more frames per second => set more overlap (less frame shift) => however, will not be able to detect short events (still averaged by the frame length...

#spectrogram_long_short_term

Setting good spectrogram parameters is a tricky business and there is no universal solution – ask colleagues and then tune the parameters.

Synthesizing signal from spectrogram

- Need to be careful with the analysis define frames with ½ frame overlap and use Hanning (Hann) window – their sequence sums exactly to 1.
- When synthesizing, initialize a buffer with the length of the resulting signal by zeros, then run a cycle:
 - For each frame, take spectrum and complete the upper (from $N/2+1 \dots N-1$) by the symmetry $X[k] = X^*[N-k]$
 - Perform IDFT that generates the current frame.
 - Add it to the buffer
 - Move to the next frame, shift the position where signal will be added to the buffer by frame overlap.

Playing with spectrogram I – filtering

- Without changes to the spectrogram, the Hanning window can be applied either in the analysis (before DFT) or in the synthesis (after IDFT)
- However, if spectrogram is modified, it is good to perform the windowing on both ends. However, the whole thing needs to be still Hanning window, so:
 - Apply sqrt of Hanning before DFT
 - Apply sqrt of Hanning after IDFT
 - sqrt Hanning * sqrt Hanning = Hanning.

#spectrogram_filtering - deleting part of spectrogram + up to you to
try anything else

Playing with spectrogram II – duration modification

- Taking every 2nd frame from the spectrum shortening 2x "Ostrava accent"
- Repeating every frame lengthening 2x "Prague accent"

#spectrogram_duration_modif

The quality of audio is not perfect – the phases would need better processing (continuity of phase across frames).

Agenda

- DFT refresher
- DFT of typical signals
- Properties of DFT
- Some more math on DFT
- Spectrogram and what can we do with it
- Summary and "take-home" messages

SUMMARY

- DFT (computed by FFT) is the basic tool for frequency analysis.
- Basic truths on signals and spectra:
 - Narrow signal <=> wide spectrum
 - Wide (smooth) signal <=> narrow spectrum
 - Periodic signal <=> discrete spectrum
 - Discrete signal <=> periodic spectrum
- Shifts of signals
 - Delay => magnitude spectrum stays the same, phase goes downhill.
 - Advance => magnitude spectrum stays the same, phase goes uphill.
 - For DFT, we need to do circular shifts to stay in 0 ... N-1

SUMMARY II.

- Spectrogram is evolution of spectrum in time
 - Contains magnitude and phase, only magnitude is shown
 - Lots of tuning can be done by non-linearity (log), colormaps, and setting brightness and contrast of the image.
 - Better frequency or better time resolution, but not both long vs. short-term spectrogram
- Synthesis of signal from spectrogram
 - Analysis should be done carefully shift is ½ of the frame-length, Hanning window.
 - Spectrum needs to be completed by the 2nd half before IDFT.
 - In case modifications are done, it's safer to use sequence of sqrt(Hanning) and sqrt(Hanning)
- Filtering is usually done by other means, but spectrogram modifications are of great use in machine learning (learned T-F masks, etc).