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Please open Python notebook 02_spectral. 



The goal of spectral analysis 

• Take a complicated signal and try to see how it is composed from 
frequency components 

• What do we want to know about them 
• At which frequencies they are 

• How strong they are 

• How they are shifted in time

• We can perform it for a single segment of a signal -> spectrum 

• Or we can see the evaluation of spectrum during the time -> 
spectrogram
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Guitar

• Piece of signal and its spectrum 

• Whole signal and its spectrogram 
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Recorder (zobcová flétna)
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Human voice (lidský hlas)
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Not just audio … seismology, vibration analysis
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Why are the signals around us complex ? 

Because they are created by complicated physical processes, not by a 
cosine generator !

• Strings: several vibration modes together, see for example 
https://www.youtube.com/watch?v=BSIw5SgUirg 

• Flutes (tubes): dtto, 
https://www.youtube.com/watch?v=KZ7intMz2Y4 

• Human voice: vocal chords (hlasivky) do everything but smooth 
movements, and this creates lots of frequencies: 
https://www.youtube.com/watch?v=y2okeYVclQo 
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Harmonically related signals 

• Most of frequency analysis involves a fundamental frequency 
(základní frekvence, fundamentální frekvence)

• and its multiples – harmonically related frequencies (harmonicky
vztažené frekvence) or simply harmonics (harmonické). 
• Musicians might have heard about it in the music theory classes – aliquots 

(alikvotní tóny) 

Our spectral analysis will follow the same principles – fundamental 
frequency and its mutliples. 
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Spectral analysis

• Correlation

• Determination of similarity

• Projection to bases

• Notation
• x[n] is the unknown signal 

• a[n] is a known (generated) analysis signal 

• c is the resulting coefficient quantifying correlation / similarity / strength of 
projection
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Implementation of this simple equation 

• x[n] and a[n] are stored in row vectors. 

• np.sum(a * x) – straightforward implementation 

• np.dot(a, x.T) – dot product (skalární součin) of 2 vectors (the 
2nd one must be column)

• np.matmul(a, x.T) – the same using a function for matrix 
multiplication

• np.matmul(A, x.T)
• more bases stored in the rows of matrix A
• we’ll get whole vector of coefficients 
• we’ll see this all the time ! 

#computing_projection
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Examples of analysis – use also your intuition !

• “Unknown” signal has N=128 samples, let’s begin with a D.C. signal …

• We’ll always show the product x[n] a[n]

• Analysis signals will be 
• another DC signal big similarity 

• Cosine – 1 period in N samples no similarity 

• Cosine – 2 periods in N samples no similarity 

#dc_signal_analysis
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• “Unknown” signal is 1 period of cosine 

• Analysis signals will be 
• another DC signal no similarity 

• Cosine – 1 period in N samples big similarity 

• Cosine – 2 periods in N samples no similarity 

#1cos_analysis
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• “Unknown” signal are 2 periods of cosine 

• Analysis signals will be 
• another DC signal no similarity 

• Cosine – 1 period in N samples no similarity 

• Cosine – 2 periods in N samples big similarity 

#2cos_analysis
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• “Unknown” signal are 2 periods of cosine + some D.C. component 

• Analysis signals will be 
• another DC signal some similarity 

• Cosine – 1 period in N samples no similarity 

• Cosine – 2 periods in N samples some similarity 

Wow, the projection manages to separate the “strengths” of D.C. and 
cosine ! 

#2cos_dc_analysis
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• “Unknown” signal are 2 periods of cosine  + some noise

• Analysis signals will be 
• another DC signal not showing - no similarity 

• Cosine – 1 period in N samples not showing - no similarity 

• Cosine – 2 periods in N samples some similarity – same as for clean 
one !  

Wow, analysis by cosines seems to be robust ! 

#2cos_noise_analysis

15



Cosines seem to work ! 

• Big positive – correlation, similarity, this frequency IS in the analyzed 
signal. 

• Big negative – anti-correlation, similar, but in the inverse sense, the 
frequency IS in the analyzed signal with minus sign. 

• Small / zero – no correlation, no similarity, the frequency is not there 
or just a little. 
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Massive spectral analysis with cosines !

• Working with cosines seems to work perfectly, let’s run a massive 
spectral analysis with many of them. 

• We’ll get many cosines cos(2π k n / N ) … but how many ?
• k = 0 is the D.C.  : cos(2π k n / N ) = cos(0) = 1
• k = 1 is one period in N samples 
• k = 2 are two periods in N samples 
• … 
• k = N/2 is the fastest cosine we can generate: cos(2π (N/2) n / N ) = cos(π n) 

generates +1, -1, +1, -1 … changing polarity every sample.  

#show_range_of_cosines
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The input signal and reference spectrum … 

• 256 samples from sound ‘e’ from my favorite test signal “Létající 
prase”.

•  the reference spectrum should look like this

#prase_signal

18



Prepare the battery of cosines and run 
the show!

#full_cos_anal
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Result of analysis 

• Coefficients ck

• Coefficients ck

in absolute values |ck|

Is this OK ??? 
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Let’s try to re-synthesize the signal … 

• Multiply each basis by the respective coefficient and sum it all

• For our cosines 

• Also nicely doable as vector-matrix multiplication: xs = cT A

#full_cos_synt

Failure – WHY ??? 
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Phase is the problem ! 

• “Unknown” signal are 2 periods of a sine

• Analysis signals will be 
• Cosine – 2 periods in N samples zero, that’s bad !!! 

#2sin_analysis

 we’ll need to analyze the signals by both cosine and sine ! 

#2cos_sin_analysis
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Analysis with whole groups of cosines and 
sines

• How will the analysis signals for limit values look like ?
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Let’s go

#full_cos_sin_anal
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Looks pretty good, how about re-synthesis ? 

• Again, multiply each basis by the respective coefficient and sum it all

• Also nicely doable as vector-matrix multiplication: xs = cT A + dT B

#full_cos_sin_synt

Works ! However, keeping track of cosines and sines is a bit 
complicated … 25



The ultimate basis for spectral analysis – a 
complex exponential 
• Complex exponential contains both cosine and sine in one function 

Complex exponentials are also harmonically related: the first has normalized 
frequency 1/N, the next 2/N, etc … 
#complex_exp

• Special cases 
• k  = 0 – analysis of the D.C. component (always 1)
• k = N/2 – analysis of the fastest function – each sample changes polarity 
• Both are real ! 
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Analysis by complex exponentials 

• Why the minus ??? 

• Projection to real numbers: in case |a| = 1, it is enough to multiply 
with the base and we obtain a good coefficient for reconstruction: 
x = 3,  b = 1:   projection c = xb = 3, reconstruction: cb = 3 . 1 = 3 OK

• Projection to a complex number: x = 3, 
projection: 
reconstruction: not OK

27



Analysis involves conjugating the complex 
basis
• Fixing this problem  - take a complex conjugate (komplexní sdružení) 

of the basis:

• More generally: for analysis signal a[n], that is complex, take  it’s 
complex conjugate a*[n]. For our bases

• The same complex exponential, but turning in opposite direction

#plus_minus_complex_exp

28



Discrete Fourier transform (Diskrétní 
Fourierova transformace) (DFT)

• What does it tell us ? 
• Index k tells us which frequency

• Magnitude (absolutní hodnota, modul) |X[k]| tells us how much

• Phase (fáze, úhel, argument, fázový posuv) arg X[k] tells us how shifted

#dft_anal
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Synthesis from all this … 

• We have done synthesis as 

• So here it should be

• Ooops, we’d get something complex 

• We could extract the magnitudes and phases from complex 
coefficients and do something like this 

• But it would be complicated as a hell, and we love our complex 
exponentials, so … 
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Complex exponentials only … 

• We use the old trick with a conjugate complex exponential turning in 
the opposite direction 
• Definition: 

• Our case

#discrete_cos_decomposition (reproduced from the last lecture) 

• But we absolutely want to stay in positive indices k, a bit of math will 
help us to go from –k (negative) to N-k (positive): 
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DFT with all N output coefficients 

• We perform the analysis                                     for the full range 
k = 0 … N-1 knowing that there will be symmetry between 
• The coefficients: X[k] = X*[N-k], this means |X[k]| = |X[N-k]| 

and arg X[k] = - arg X[k]
• The complex exponentials: 

• We’ll perform the synthesis                                  again with the full 
range of coefficients k = 0 … N-1 knowing that
• k = 0 will produce a D.C. value (real signal) 
• k = N/2 will produce a real signal as well (+1,-1,+1,-1, …)
• For other k’s, pairs k and N-k will produce two complex exponentials running 

in the opposite direction, summing up to a cosine:
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Full DFT spectrum and how many values do 
we have ?  
#full_dft_anal

• Let’s count the floats: 
• X[0] – real, 1 float

• X[1 … N/2-1] – complex, 2 floats each: 2(N/2 – 1)

• X[N/2] – real, 1 float

• X[N/2+1 … N-1] – no floats needed, we already have them: X[k] = X*[N-k]

• All together: 1 + 2(N/2 – 1) + 1 = N, OK, DFT preserves all the 
information
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DFT synthesis – inverse Discrete Fourier Transform 
(inverzní diskrétní Fourierova transformace)

#full_dft_synt

• Very nice, except for the dynamic range … max = 0.57 for the original 
signal and 147 for the synthesized one 

• … it has something to do with the “normality” of DFT bases (see next 
lecture). 

• Now, we just apply a correction term, so the ultimate definition of 
DFT and IDFT is
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Using DFT in your code

• DFT is computation hungry
• Computation of each output coefficient involves N complex mutliplications 

and N complex additions. 

• And there are N output coefficients, co that the complexity is 2N2

• Quadratic complexity is bad even with modern 
computers with GPUs and was even worse 
in the 60’s where a computer occupying 
whole room had computing power 
smaller than your smart watch.

• Developing FFT in the 60’s completely 
revolutionized the signal processing
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Fast Fourier transform (rychlá Fourierova 
transformace) - FFT
• Works only for powers of 2: N = 2b

• Works in b stages and uses the symmetries 
of complex numbers, each stage needs only 
N operations, the graph looks like butterflies 
=> butterly algorithm

• The complexity goes from N2 to N log2 N

• fft is part of all numerical libraries in all possible 
languages. 

• Sorry, no time to derive it thoroughly, but look at one of many sources 
(incl. Wikipedia)

Remember FFT is not a new transform, it is a fast implementation of DFT !

#fft_anal_synt
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Showing and interpreting the result of DFT -
frequency
• Your boss/colleague/customer won’t like you for just the index k on x-axis

• Normalized frequency (normovaná frekvence) k / N is better

• Regular frequency in Hertz is even better 
• Need the sampling frequency (vzorkovací frekvence) Fs [Hz] – number of samples 

per second. Sampling period (vzorkovací perioda) Ts = 1 / Fs is in seconds. 

• many ways to derive the conversion but let’s do it this simple way: 
• The period of a cos (or sine or complex exp.) with normalized frequency of 1/N is N

samples. 
• The period in time is N Ts. Therefore the frequency is 1/ (N Ts) = Fs / N. 

Normalizing and de-normalizing frequencies involves just by division and 
multiplication by the sampling frequency Fs. 

#dft_freq_axes
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Showing and interpreting the result of DFT –
going to Fs or just Fs /2 ? 
• We usually show only the left part of the DFT spectrum as the right one is 

not informative. 
• indices 0 … N/2, attention, this is N/2+1 coefficients, not N/2 !!! For N=256, we’ll 

need to keep 129 values !!! 
• normalized frequencies 0 … 1/2, 
• regular frequencies 0 … Fs/2

#dft_final_visualization

Attention: the halves are symmetrical only for real input signals. Beware in 
case you have to process anything complex (digital radio, microphone 
arrays, …) 
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Frequency resolution of DFT 

• Interval 0 … Fs is divided into N samples, therefore the frequency 
resolution is Fs / N. 

• This is not much, consider an example: 
• Fs = 48000 Hz. 

• Trying to tune low tones on a piano 

• Performing DFT with N = 256 samples. 

• The resoluition is 48000 / 256 = 187 Hz – quite bad if we need units of Hz ! 
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Increasing the resolution – option I.

• Increase the number of samples, in case we have Fs = 48000 Hz, let’s 
take N = 65536 and run FFT 

• This will take lots of computation ! 

• The missing samples can be either taken from the signal (if we have 
them) or filled by zeros – zero padding (doplňování nulami)

#zero_padding 

With zero padding, the result looks nicer, but there is no new 
information ! 
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or … Discrete time Fourier Transform (Fourierova
transformace s diskrétním časem) - DTFT

• DFT sets the normalized frequency points to multiples of 1 / N

• DTFT can work with anything – usually defined with normalized 
angular frequency

• We can set the range of frequencies to anything we want. 

• However, needs to compute by definition and therefore much slower 
than FFT. 

• Let us show analysis of our speech spectrum with better precision 
around the maximum

#dtft study carefully, you might need it in the project ☺
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SUMMARY

• We analyze by multiplying and summing vectors 
• Difficult signals are analyzed by harmonically related functions

• Cosines – not enough
• Cosines and sines – too complicated 
• Ultimate solution: complex exponentials => DFT

• The original signal can be fully re-synthesized – IDFT (making use of 
properties of complex numbers to get a real signal) 

• The results are there for N discrete frequencies from 0 till almost Fs
• Of these, only N/2+1 are worth showing
• with a nice frequency axis !

• Frequency resolution is limited but can be improved 
• by zero padding 
• By switching to DTFT
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