Introduction to spectral analysis

Honza Černocký, ÚPGM

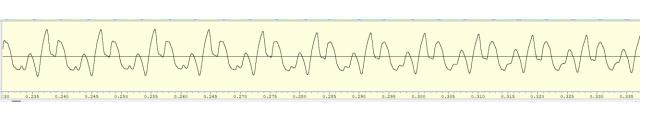
Please open Python notebook 02_spectral.

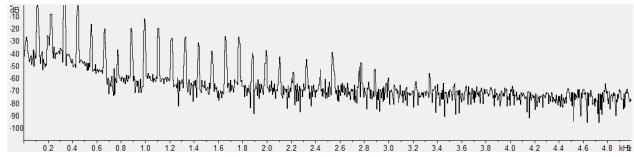
The goal of spectral analysis

- Take a complicated signal and try to see how it is composed from frequency components
- What do we want to know about them
 - At which frequencies they are
 - How strong they are
 - How they are shifted in time
- We can perform it for a single segment of a signal -> spectrum
- Or we can see the evaluation of spectrum during the time -> spectrogram

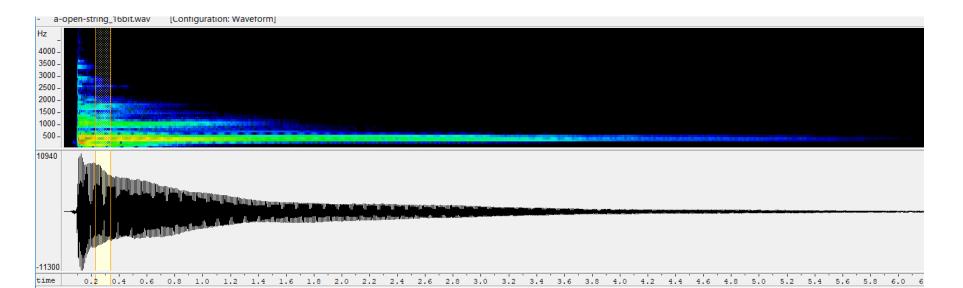
Guitar

• Piece of signal and its spectrum

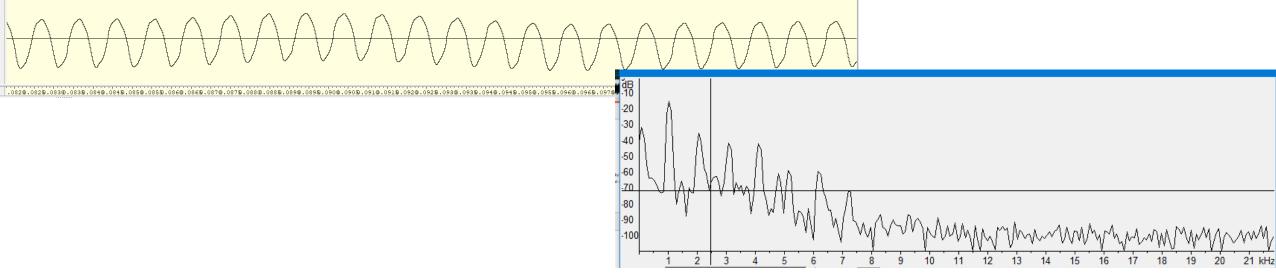


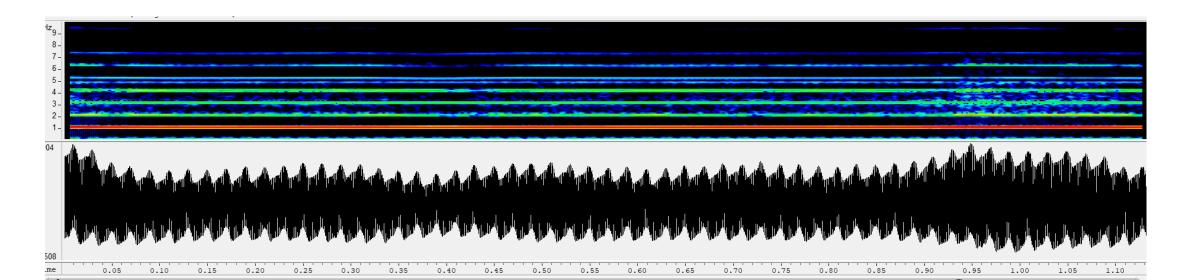


• Whole signal and its spectrogram

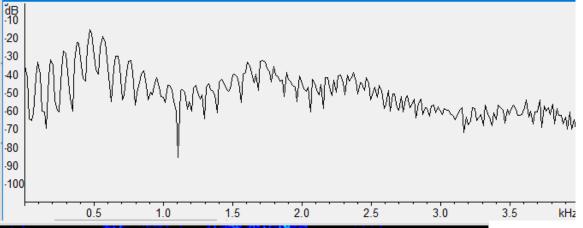


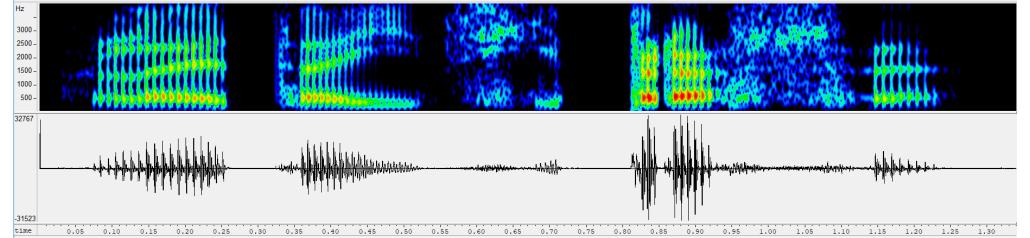
Recorder (zobcová flétna)





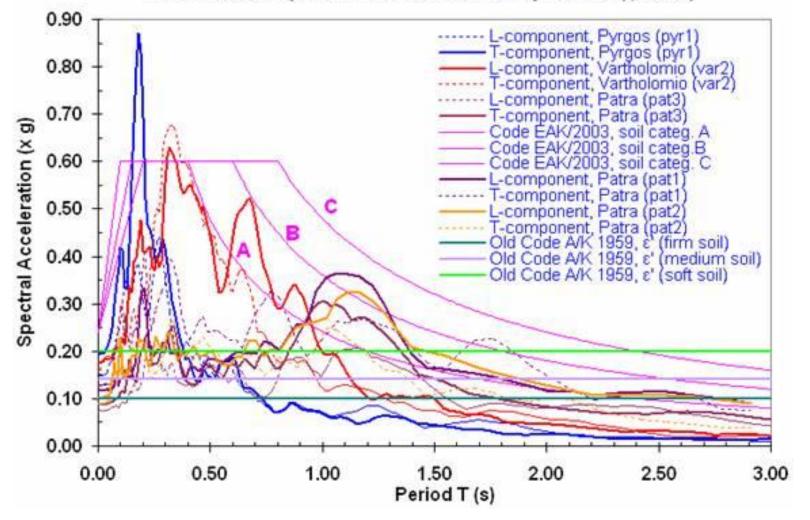
Human voice (lidský hlas)





Not just audio ... seismology, vibration analysis

ACHAIA-ILIA ERTHQUAKE, June 08, 2008. M=6.5, Elastic response acceleration spectra of horizontal components (ζ=0.05)



Why are the signals around us complex?

Because they are created by complicated physical processes, not by a cosine generator!

- Strings: several vibration modes together, see for example https://www.youtube.com/watch?v=BSIw5SgUirg
- Flutes (tubes): dtto,
 https://www.youtube.com/watch?v=KZ7intMz2Y4
- Human voice: vocal chords (hlasivky) do everything but smooth movements, and this creates lots of frequencies: https://www.youtube.com/watch?v=y2okeYVclQo

Harmonically related signals

- Most of frequency analysis involves a fundamental frequency (základní frekvence, fundamentální frekvence)
- and its multiples harmonically related frequencies (harmonicky vztažené frekvence) or simply harmonics (harmonické).
 - Musicians might have heard about it in the music theory classes aliquots (alikvotní tóny)

Our spectral analysis will follow the same principles – **fundamental frequency and its mutliples.**

Spectral analysis

- Correlation
- Determination of similarity
- Projection to bases
- Notation
 - x[n] is the unknown signal
 - a[n] is a known (generated) analysis signal
 - c is the resulting coefficient quantifying correlation / similarity / strength of projection

$$c = \sum_{n=0}^{N-1} x[n]a[n]$$

Implementation of this simple equation

- x[n] and a[n] are stored in row vectors.
- np.sum (a * x) straightforward implementation
- np.dot(a, x.T) dot product (skalární součin) of 2 vectors (the 2^{nd} one must be column)
- np.matmul(a, x.T) the same using a function for matrix multiplication
- np.matmul(A, x.T)
 - more bases stored in the rows of matrix A
 - we'll get whole vector of coefficients
 - we'll see this all the time ! $\mathbf{c} = \mathbf{A} \mathbf{x}^{\top}$

#computing_projection

Examples of analysis – use also your intuition!

- "Unknown" signal has N=128 samples, let's begin with a **D.C. signal** ...
- We'll always show the product x[n] a[n]
- Analysis signals will be

another DC signal
 big similarity

• Cosine – 1 period in *N* samples no similarity

Cosine – 2 periods in N samples no similarity

#dc_signal_analysis

- "Unknown" signal is 1 period of cosine
- Analysis signals will be

another DC signal no similarity

• Cosine – 1 period in *N* samples big similarity

Cosine – 2 periods in N samples no similarity

#1cos_analysis

- "Unknown" signal are 2 periods of cosine
- Analysis signals will be

another DC signal no similarity

• Cosine – 1 period in *N* samples no similarity

Cosine – 2 periods in N samples big similarity

#2cos_analysis

- "Unknown" signal are 2 periods of cosine + some D.C. component
- Analysis signals will be

another DC signal some similarity

• Cosine – 1 period in *N* samples no similarity

Cosine – 2 periods in N samples some similarity

Wow, the projection manages to separate the "strengths" of D.C. and cosine!

#2cos_dc_analysis

- "Unknown" signal are 2 periods of cosine + some noise
- Analysis signals will be
 - another DC signal not showing no similarity
 - Cosine 1 period in N samples not showing no similarity
 - Cosine 2 periods in N samples some similarity same as for clean one!

Wow, analysis by cosines seems to be robust!

#2cos_noise_analysis

Cosines seem to work!

- Big positive correlation, similarity, this frequency IS in the analyzed signal.
- Big negative anti-correlation, similar, but in the inverse sense, the frequency IS in the analyzed signal with minus sign.
- **Small / zero** no correlation, no similarity, the frequency is not there or just a little.

Massive spectral analysis with cosines!

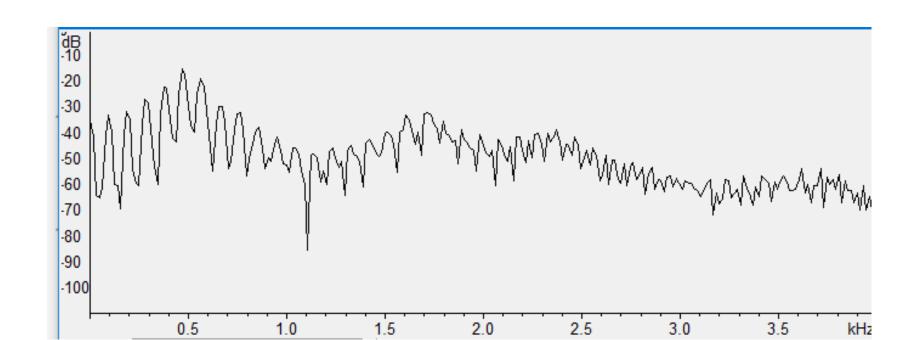
- Working with cosines seems to work perfectly, let's run a massive spectral analysis with many of them.
- We'll get many cosines $cos(2\pi k n / N)$... but **how many**?
 - k = 0 is the D.C. : $cos(2\pi k n / N) = cos(0) = 1$
 - k = 1 is one period in N samples
 - k = 2 are two periods in N samples
 - ...
 - k = N/2 is the fastest cosine we can generate: $cos(2\pi (N/2) n / N) = cos(\pi n)$ generates +1, -1, +1, -1 ... changing polarity every sample.

#show_range_of_cosines

The input signal and reference spectrum ...

- **256** samples from sound 'e' from my favorite test signal "Létající prase".
- the reference spectrum should look like this

#prase_signal



Prepare the battery of cosines and run the show!

$$a_0[n] = \cos(2\pi \frac{0}{N}n)$$

$$a_1[n] = \cos(2\pi \frac{1}{N}n)$$

$$a_2[n] = \cos(2\pi \frac{2}{N}n)$$

. . .

$$a_{\frac{N}{2}}[n] = \cos(2\pi \frac{\frac{N}{2}}{N}n)$$

$$c_0 = \sum_{n=0}^{N-1} a_0[n]x[n]$$

$$c_1 = \sum_{n=0}^{N-1} a_1[n]x[n]$$

$$c_2 = \sum_{n=0}^{N-1} a_2[n]x[n]$$

. .

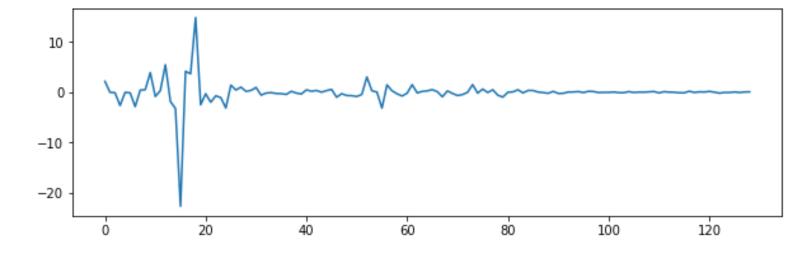
$$c_{\frac{N}{2}} = \sum_{n=0}^{N-1} a_{\frac{N}{2}}[n]x[n]$$

$$\mathbf{c} = \mathbf{A}\mathbf{x}^{ op}$$

#full_cos_anal

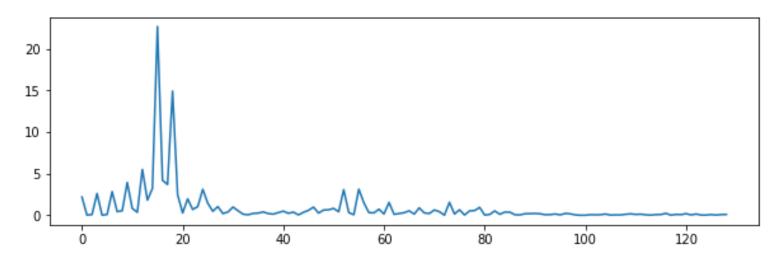
Result of analysis

• Coefficients c_k



• Coefficients c_k in absolute values $|c_k|$

Is this OK???



Let's try to re-synthesize the signal ...

Multiply each basis by the respective coefficient and sum it all

$$x_s[n] = c_0 + c_1 a_1[n] + c_2 a_2[n] + \dots + c_{\frac{N}{2}} a_{\frac{N}{2}}[n]$$

For our cosines

$$x_s[n] = c_0 + c_1 \cos(2\pi \frac{1}{N}n) + c_2 \cos(2\pi \frac{2}{N}n) + \dots + c_{\frac{N}{2}} \cos(2\pi \frac{\frac{N}{2}}{N}n)$$

• Also nicely doable as vector-matrix multiplication: $\mathbf{x}_s = \mathbf{c}^T \mathbf{A}$

#full_cos_synt

Failure – WHY ???

Phase is the problem!

- "Unknown" signal are 2 periods of a sine
- Analysis signals will be
 - Cosine 2 periods in N samples zero, that's bad !!!

#2sin_analysis

⇒ we'll need to analyze the signals by both cosine and sine!

#2cos_sin_analysis

Analysis with whole groups of cosines and sines

$$a_{0}[n] = \cos(2\pi \frac{0}{N}n) \qquad b_{0}[n] = \sin(2\pi \frac{0}{N}n)$$

$$a_{1}[n] = \cos(2\pi \frac{1}{N}n) \qquad b_{1}[n] = \sin(2\pi \frac{1}{N}n)$$

$$a_{2}[n] = \cos(2\pi \frac{2}{N}n) \qquad b_{2}[n] = \sin(2\pi \frac{2}{N}n)$$

$$\dots$$

$$a_{\frac{N}{2}}[n] = \cos(2\pi \frac{\frac{N}{2}}{N}n) \qquad b_{\frac{N}{2}}[n] = \sin(2\pi \frac{\frac{N}{2}}{N}n)$$

How will the analysis signals for limit values look like ?

Let's go

$$c_{0} = \sum_{n=0}^{N-1} a_{0}[n]x[n] \qquad d_{0} = \sum_{n=0}^{N-1} b_{0}[n]x[n]$$

$$c_{1} = \sum_{n=0}^{N-1} a_{1}[n]x[n] \qquad d_{1} = \sum_{n=0}^{N-1} b_{1}[n]x[n]$$

$$c_{2} = \sum_{n=0}^{N-1} a_{2}[n]x[n] \qquad d_{2} = \sum_{n=0}^{N-1} b_{2}[n]x[n]$$

$$\dots$$

$$c_{\frac{N}{2}} = \sum_{n=0}^{N-1} a_{\frac{N}{2}}[n]x[n] \qquad d_{\frac{N}{2}} = \sum_{n=0}^{N-1} b_{\frac{N}{2}}[n]x[n]$$

$$\mathbf{c} = \mathbf{A}\mathbf{x}^{\top}$$

$$\mathbf{d} = \mathbf{B} \mathbf{x}^{ op}$$

#full_cos_sin_anal

Looks pretty good, how about re-synthesis?

Again, multiply each basis by the respective coefficient and sum it all

$$xs[n] = c_0 + c_1 \cos(2\pi \frac{1}{N}n) + c_2 \cos(2\pi \frac{2}{N}n) + \dots + c_{\frac{N}{2}} \cos(2\pi \frac{\frac{N}{2}}{N}n) + d_1 \sin(2\pi \frac{1}{N}n) + d_2 \sin(2\pi \frac{2}{N}n) + \dots + d_{\frac{N}{2}} \sin(2\pi \frac{\frac{N}{2}}{N}n)$$

• Also nicely doable as vector-matrix multiplication: $\mathbf{x}_s = \mathbf{c}^T \mathbf{A} + \mathbf{d}^T \mathbf{B}$

#full_cos_sin_synt

Works! However, keeping track of cosines and sines is a bit complicated ...

The ultimate basis for spectral analysis – a complex exponential

Complex exponential contains both cosine and sine in one function

$$a[n] = e^{j2\pi \frac{k}{N}n} = \cos 2\pi \frac{k}{N}n + \sin 2\pi \frac{k}{N}n$$

Complex exponentials are also harmonically related: the first has normalized frequency 1/N, the next 2/N, etc ...

#complex_exp

- Special cases
 - k = 0 analysis of the D.C. component (always 1)
 - k = N/2 analysis of the fastest function each sample changes polarity
 - Both are real!

Analysis by complex exponentials $X[k] = \sum_{i=1}^{N-1} x[n]e^{-j2\pi\frac{k}{N}n}$

$$X[k] = \sum_{n=0}^{N-1} x[n]e^{-j2\pi \frac{k}{N}n}$$

- Why the minus ???
- Projection to real numbers: in case |a| = 1, it is enough to multiply with the base and we obtain a good coefficient for reconstruction: x = 3, b = 1: projection c = xb = 3, reconstruction: cb = 3. 1 = 3 OK
- Projection to a complex number: x = 3, $b = \frac{1}{\sqrt{2}}(1+j)$ projection: $c = x \times b = 3 \times \frac{1}{\sqrt{2}}(1+j) = \frac{1}{\sqrt{2}}(3+3j)$ reconstruction: $x = c \times b = (3+3j) \times \frac{1}{\sqrt{2}}(1+j) = 3j$ not OK

Analysis involves conjugating the complex basis

• Fixing this problem - take a complex conjugate (komplexní sdružení) of the basis: $c = x \times b^* = 3 \times \frac{1}{\sqrt{2}}(1-j) = \frac{1}{\sqrt{2}}(3-3j)$

$$c \times b = 6$$
.

• More generally: for analysis signal a[n], that is complex, take it's complex conjugate $a^*[n]$. For our bases

$$a[n] = e^{j2\pi \frac{k}{N}n} \qquad a^*[n] = e^{-j2\pi \frac{k}{N}n}$$

• The same complex exponential, but turning in opposite direction

#plus_minus_complex_exp

Discrete Fourier transform (Diskrétní Fourierova transformace) (DFT) $X[k] = \sum_{i=1}^{N-1} x[n]e^{-j2\pi\frac{k}{N}n}$

$$a_{0}[n] = e^{j2\pi \frac{0}{N}n} \qquad X[0] = \sum_{n=0}^{N-1} a_{0}^{\star}[n]x[n]$$

$$a_{1}[n] = e^{j2\pi \frac{1}{N}n} \qquad X[1] = \sum_{n=0}^{N-1} a_{1}^{\star}[n]x[n]$$

$$a_{2}[n] = e^{j2\pi \frac{2}{N}n} \qquad X[2] = \sum_{n=0}^{N-1} a_{2}^{\star}[n]x[n]$$

$$\cdots \qquad X[\frac{N}{2}] = \sum_{n=0}^{N-1} a_{\frac{N}{2}}^{\star}[n]x[n]$$

$$\mathbf{X} = \mathbf{A}^{\star} \mathbf{x}^{\top}$$

- What does it tell us?
 - Index k tells us which frequency
 - Magnitude (absolutní hodnota, modul) |X[k]| tells us how much
 - Phase (fáze, úhel, argument, fázový posuv) arg X[k] tells us how shifted

#dft_anal

Synthesis from all this ...

- We have done synthesis as $x_s[n] = c_0 + c_1 a_1[n] + c_2 a_2[n] + \ldots + c_{\frac{N}{2}} a_{\frac{N}{2}}[n]$
- So here it should be

$$x_s[n] = X[0] + X[1]e^{j2\pi \frac{1}{N}n} + X[2]e^{j2\pi \frac{2}{N}n} + \dots + c_{\frac{N}{2}}e^{j2\pi \frac{\frac{N}{2}}{N}n}$$

- Ooops, we'd get something complex 😊
- We could extract the magnitudes and phases from complex coefficients and do something like this

$$x_s[n] = X[0] + \sum_{k=0}^{\frac{N}{2}} 2|X[k]|\cos\left(2\pi \frac{k}{N}n + \arg X[k]\right)$$

• But it would be complicated as a hell, and we love our complex exponentials, so ...

Complex exponentials only ...

 We use the old trick with a conjugate complex exponential turning in the opposite direction

• Definition:
$$\cos \alpha = \frac{e^{j\alpha} + e^{-j\alpha}}{2}$$

• Our case
$$X[k]e^{j2\pi\frac{k}{N}n} + X^{\star}[k]e^{-j2\pi\frac{k}{N}n} = 2|X[k]|\cos\left(2\pi\frac{k}{N}n + \arg X[k]\right)$$

#discrete_cos_decomposition (reproduced from the last lecture)

• But we absolutely want to stay in **positive** indices k, a bit of math will help us to go from -k (negative) to N-k (positive):

$$e^{-j2\pi\frac{k}{N}n} = e^{-j(2\pi\frac{k}{N}-2\pi)n} = e^{j2\pi\frac{N-k}{N}n}$$

DFT with all N output coefficients

- We perform the analysis $X[k] = \sum_{n=0}^{\infty} x[n]e^{-j2\pi\frac{k}{N}n}$ for the full range $k=0\dots N-1$ knowing that there will be symmetry between
 - The coefficients: $X[k] = X^*[N-k]$, this means |X[k]| = |X[N-k]|and arg $X[k] = -\arg X[k]$ • The complex exponentials: $\left(e^{j2\pi\frac{k}{N}n}\right)^{\star} = e^{-j2\pi\frac{k}{N}n}$
- We'll perform the synthesis $x_s[n] = \sum_{k=0}^{\infty} X[k]e^{+j2\pi \frac{k}{N}n}$ again with the full range of coefficients $k = 0 \dots N-1$ knowing that
 - k = 0 will produce a D.C. value (real signal)
 - k = N/2 will produce a real signal as well (+1,-1,+1,-1,...)
 - For other k's, pairs k and N-k will produce two complex exponentials running in the opposite direction, summing up to a cosine:

$$X[k]e^{j2\pi\frac{k}{N}n} + X[-k]e^{-j2\pi\frac{k}{N}n} = 2|X[k]|\cos\left(2\pi\frac{k}{N}n + \arg X[k]\right)$$

Full DFT spectrum and how many values do we have ?

```
#full_dft_anal
```

- Let's count the floats:
 - *X*[0] real, 1 float
 - X[1 ... N/2-1] complex, 2 floats each: 2(N/2-1)
 - *X[N/2]* real, 1 float
 - X[N/2+1...N-1] no floats needed, we already have them: $X[k] = X^*[N-k]$
- All together: 1 + 2(N/2 1) + 1 = N, OK, DFT preserves all the information

DFT synthesis – inverse Discrete Fourier Transform (inverzní diskrétní Fourierova transformace)

$$x_s[n] = \sum_{k=0}^{N-1} X[k]e^{+j2\pi \frac{k}{N}n}$$

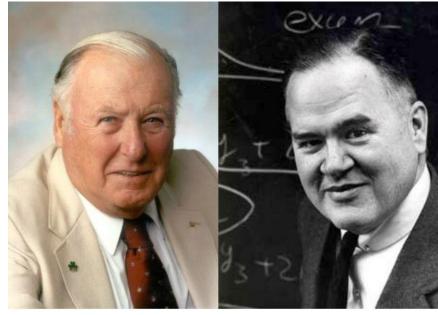
#full_dft_synt

- Very nice, except for the dynamic range ... max = 0.57 for the original signal and 147 for the synthesized one ☺
- ... it has something to do with the "normality" of DFT bases (see next lecture).
- Now, we just apply a correction term, so the ultimate definition of DFT and IDFT is

$$X[k] = \sum_{n=0}^{N-1} x[n]e^{-j2\pi\frac{k}{N}n}, \qquad x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k]e^{+j2\pi\frac{k}{N}n}$$

Using DFT in your code

- DFT is computation hungry
 - Computation of each output coefficient involves *N* complex mutliplications and *N* complex additions.
 - And there are N output coefficients, co that the complexity is 2N²
 - Quadratic complexity is bad even with modern computers with GPUs and was even worse in the 60's where a computer occupying whole room had computing power smaller than your smart watch.
- Developing FFT in the 60's completely revolutionized the signal processing



James William Cooley (1926-2016

John Wilder Tukey (1915-2000)

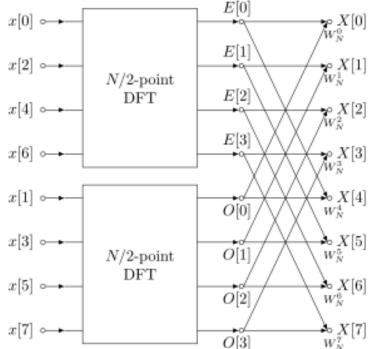
Fast Fourier transform (rychlá Fourierova

transformace) - FFT

- Works only for powers of 2: $N = 2^b$
- Works in b stages and uses the symmetries of complex numbers, each stage needs only N operations, the graph looks like butterflies => butterly algorithm
- The complexity goes from N^2 to $N \log_2 N$
- **fft** is part of all numerical libraries in all possible languages.
- Sorry, no time to derive it thoroughly, but look at one of many sources (incl. Wikipedia)

Remember FFT is not a new transform, it is a fast implementation of DFT!

#fft_anal_synt



Showing and interpreting the result of DFT - frequency

- Your boss/colleague/customer won't like you for just the index k on x-axis
- Normalized frequency (normovaná frekvence) k / N is better
- Regular frequency in Hertz is even better
 - Need the sampling frequency (vzorkovací frekvence) F_s [Hz] number of samples per second. Sampling period (vzorkovací perioda) $T_s = 1 / F_s$ is in seconds.
- many ways to derive the conversion but let's do it this simple way:
 - The period of a cos (or sine or complex exp.) with normalized frequency of 1/N is N samples.
 - The period in time is $N T_s$. Therefore the frequency is $1/(N T_s) = F_s/N$.

Normalizing and de-normalizing frequencies involves just by division and multiplication by the sampling frequency $F_{s.}$

```
#dft_freq_axes
```

Showing and interpreting the result of DFT – going to F_s or just $F_s/2$?

- We usually show only the left part of the DFT spectrum as the right one is not informative.
 - indices 0 ... N/2, attention, this is N/2+1 coefficients, not N/2!!! For N=256, we'll need to keep 129 values!!!
 - normalized frequencies 0 ... 1/2,
 - regular frequencies $0 \dots F_s/2$

#dft final visualization

Attention: the halves are symmetrical only for real input signals. Beware in case you have to process anything complex (digital radio, microphone arrays, ...)

Frequency resolution of DFT

• Interval 0 ... F_s is divided into N samples, therefore the frequency resolution is F_s / N.

- This is not much, consider an example:
 - $F_s = 48000 \text{ Hz}.$
 - Trying to tune low tones on a piano
 - Performing DFT with N = 256 samples.
 - The resoluition is 48000 / 256 = 187 Hz quite bad if we need units of Hz!

14	A♯,/B♭,	A≱1/B♭1	58.2705
13	A,	A1	55.0000
12	G♯./A♭.	G≱1/A♭1	51.9131
11	G,	G1	48.9994
10	F♯,/G♭,	F♯1/G♭1	46.2493
9	F,	F1	43.6535

Increasing the resolution – option I.

- Increase the number of samples, in case we have F_s = 48000 Hz, let's take N = 65536 and run FFT
- This will take lots of computation!
- The missing samples can be either taken from the signal (if we have them) or filled by zeros – zero padding (doplňování nulami)

#zero_padding

With zero padding, the result looks nicer, but there is no new information!

or ... Discrete time Fourier Transform (Fourierova transformace s diskrétním časem) - DTFT

- DFT sets the normalized frequency points to multiples of 1/N
- DTFT can work with anything usually defined with normalized angular frequency $\omega = 2\pi \frac{f}{F}$

$$\tilde{X}(e^{j\omega}) = \sum_{n=0}^{N-1} x[n]e^{-j\omega n}$$

- We can set the range of frequencies to anything we want.
- However, needs to compute by definition and therefore much slower than FFT.
- Let us show analysis of our speech spectrum with better precision around the maximum

#dtft study carefully, you might need it in the project ©

SUMMARY

- We analyze by multiplying and summing vectors
- Difficult signals are analyzed by harmonically related functions
 - Cosines not enough
 - Cosines and sines too complicated
 - Ultimate solution: complex exponentials => DFT
- The original signal can be fully re-synthesized IDFT (making use of properties of complex numbers to get a real signal)
- The results are there for N discrete frequencies from 0 till almost F_s
 - Of these, only N/2+1 are worth showing
 - with a nice frequency axis!
- Frequency resolution is limited but can be improved
 - by zero padding
 - By switching to DTFT