Introduction
to spectral analysis

Honza Cernocky, UPGM

Please open Python notebook 02 spectral.

The goal of spectral analysis

* Take a complicated signal and try to see how it is composed from
frequency components

 What do we want to know about them
* At which frequencies they are
* How strong they are
 How they are shifted in time

* We can perform it for a single segment of a signal -> spectrum

* Or we can see the evaluation of spectrum during the time ->
spectrogram

Guitar

Y /'\ 'r\\l

* Whole signal

- da-open-siring_lobitwav

W \J

and its spectrogram

[LonTiguration: Waverorm]

=13
o=

-30
40
-50
60
-0
80
90
-100)

time

44

46

48 WE

Recorder etna

AN AN AN AN AN AN AN AN AN AN AN AW AW T A A A W AW AW AW

.052 5! 3@ 35 ‘l'f' T ‘JE/ 5'7' T SE.05b'ﬁ/.0555/.057’@.0575/.05-5@.0-355.0-35@.0-355.0;O@.O;OE.OS.I@.OS.IE.OSQ 5/ 3@ 35 'iﬁ' f' '15 5'1' f' 5 - - .0397 ;

-30
40

AL L

P - e - -]
T T T T TR SR S N

=
=

Human voice (lidsky hlas

W N

oA o ﬂﬁﬁn

;T

— WHJIUV

0.172 0.174

dB
90
20
30
40
50
60
70
80
90
100
05 10 15 20 25 30 35 kH:
Hz
3000 -
2500 -
2000 -
1500 -
1000 -
500 -
32767
b Jh [I |\ 11 ‘H .\J._ alib AL thH‘l \JIQI||;&4J.JcluﬁV\.. A ORI . .11 P HJ 1AL _L IR B b i Al " m eatshbaninmcende LI L |
i i NN v ijii 1‘ 1] ol Tt v ki)
5
-31623
e

Spectral Acceleration (x g)

Not just audio ... seismology, vibration analysis

ACHAIA-ILIA ERTHQUAKE, June 08, 2008. M=6.5, Elastic response Chadwick 8500C+ Balancer/Analyzer
acceleration spectra of horizontal components ({=0.05)

090 +
Ly e L-component, Pyrgos Ep‘{”
T-component, Pyrgos (pyr!
0.80 + L-component, Vartholomio var?%
I | o T-component, Vartholomio (var2
------- L-component, Patra (patB{
070 4 T-component, Patra (pat3

—— Code EAK/2003, soil categ. A
——— Code EAK/2003, soil cateqg.B
— Code EAK/2003, soil cateqg. C

L-component, Patra %patl
------- T-component, Patra (pat1)

060 +

050 1 L-component, Patra %patl’)
L {/ T-component, Patra pat?) _
- QOld Code A/K 1959, £ (firm soll)
040 +/ Old Code A/K 1959, £' (medium soil)
Ll soft soil)

- ——Qld Code A/K 1858, ¢'

0.00 0.50 1.00 1.50 2.00 2.50 3.00
Period T (s)

Why are the signals around us complex ?

Because they are created by complicated physical processes, not by a
cosine generator !

 Strings: several vibration modes together, see for example
https://www.youtube.com/watch?v=BSIw5SgUirg

* Flutes (tubes): dtto,
https://www.youtube.com/watch?v=KZ7intMz2Y4

 Human voice: vocal chords (hlasivky) do everything but smooth
movements, and this creates lots of frequencies:
https://www.youtube.com/watch?v=y2okeYVclQo

https://www.youtube.com/watch?v=BSIw5SgUirg
https://www.youtube.com/watch?v=KZ7intMz2Y4
https://www.youtube.com/watch?v=y2okeYVclQo

Harmonically related signals

* Most of frequency analysis involves a fundamental frequency
(zakladni frekvence, fundamentalni frekvence)

e and its multiples — harmonically related frequencies (harmonicky
vztazené frekvence) or simply harmonics (harmonické).

* Musicians might have heard about it in the music theory classes — aliquots
(alikvotni tony)

Our spectral analysis will follow the same principles — fundamental
frequency and its mutliples.

Spectral analysis

* Correlation
* Determination of similarity The same !
* Projection to bases

* Notation
* x[n] is the unknown signal
e a[n] is a known (generated) analysis signal

* cis the resulting coefficient quantifying correlation / similarity / strength of
projection
N—1

c = Z r[nla[n|

n=>0

Implementation of this simple equation

* x[n] and a[n] are stored in row vectors.
*np.sum(a * x) —straightforward implementation

e np.dot (a, x.T) —dot product (skalarni soucin) of 2 vectors (the
2"d one must be column)

e np.matmul (a, x.T) —the same using a function for matrix
multiplication

* np.matmul (A, x.T)
* more bases stored in the rows of matrix A

* we’ll get whole vector of coefficients
* we'll see this all the time! ¢ = Ax'

#computing_ projection

Examples of analysis — use also your intuition !

* “Unknown” signal has N=128 samples, let’s begin with a D.C. signal ...
* We'll always show the product x[n] a[n]

* Analysis signals will be

e another DC signal big similarity
* Cosine —1 period in N samples no similarity
* Cosine — 2 periods in N samples no similarity

#dc_signal analysis

11

* “Unknown” signal is 1 period of cosine
* Analysis signals will be

e another DC signal no similarity
* Cosine —1 period in N samples big similarity
* Cosine — 2 periods in N samples no similarity

#1cos_analysis

* “Unknown” signal are 2 periods of cosine
* Analysis signals will be

e another DC signal no similarity
* Cosine —1 period in N samples no similarity
* Cosine — 2 periods in N samples big similarity

#2cos_analysis

* “Unknown” signal are 2 periods of cosine + some D.C. component

* Analysis signals will be

e another DC signal some similarity
* Cosine —1 period in N samples no similarity
* Cosine — 2 periods in N samples some similarity

Wow, the projection manages to separate the “strengths” of D.C. and
cosine |

#2cos_dc_analysis

* “Unknown” signal are 2 periods of cosine + some noise
* Analysis signals will be

e another DC signal not showing - no similarity

* Cosine —1 period in N samples not showing - no similarity

* Cosine — 2 periods in N samples some similarity — same as for clean
one !

Wow, analysis by cosines seems to be robust !

#2cos_noise _analysis

Cosines seem to work |

* Big positive — correlation, similarity, this frequency IS in the analyzed
signal.

* Big negative — anti-correlation, similar, but in the inverse sense, the
frequency IS in the analyzed signal with minus sign.

* Small / zero — no correlation, no similarity, the frequency is not there
or just a little.

Massive spectral analysis with cosines |

* Working with cosines seems to work perfectly, let’s run a massive
spectral analysis with many of them.

* We'll get many cosines cos(2rrkn /N) ... but how many ?
e k=0istheD.C. :cos(2mrkn/N) =cos(0) =1
* k=1 isone period in N samples
e k=2 are two periods in N samples

* k=N/2is the fastest cosine we can generate: cos(2rt (N/2) n /N) = cos(rt n)
generates +1, -1, +1, -1 ... changing polarity every sample.

#show_range_of cosines

The input signal and reference spectrum ...

e 256 samples from sound ‘e’ from my favorite test signal “Létajici

prase”.

* the reference spectrum should look like this

#prase_signal

dB
A0

20
-30
40
50
&0
-0
-80
90
100

Prepare the battery of cosines and run

the show!
apn| = 005(27?%?’1)
ayn| = cos(%r%n)
2

asn| = cos(QwNn)

N
ax|n| = cos(Qﬂ%n)

co = Z aop|n|xn)

n=>0

c=Ax"'

#full _cos anal

19

Result of analysis

* Coefficients ¢, " oM W

_lﬂ -

—20 -

0 20 0 &0 80 100 120

20 4

* Coefficients ¢,
in absolute values ¢,/ *]

10 4

s this OK ??? AL -

0 20 40 60 80 100 120

20

Let’s try to re-synthesize the signal ...

* Multiply each basis by the respective coefficient and sum it all
zs|n| = co + cra1(n] + c2a2[n] + ... + cyax(n|
* For our cosines

rs\n| = co+ ¢ COS(ZWﬁn) + 3 cos(27rﬁn) + ...+ cy cos(2m

* Also nicely doable as vector-matrix multiplication: x, = c" A

#full _cos_synt

Failure — WHY ???

= |l

n)

21

Phase is the problem |

e “Unknown” signal are 2 periods of a sine

* Analysis signals will be
* Cosine— 2 periods in N samples zero, that’s bad !!!

#2sin_analysis
—> we’ll need to analyze the signals by both cosine and sine !

#2cos_sin_analysis

22

Analysis with whole groups of cosines and
sines

e 2 oy 2
az[n] = cos(2m5n) ba[n] = sin(2r%n)
ay n] = cos(2mx-n) b% n) = sin(27rn)

* How will the analysis signals for limit values look like ?

23

Let’s go

c=Ax'

do = Z bo[n|z[n]

Z aop[n]xn]

Co

Bx'

dy = Z by [n]x|n]

dy = Z ba[n]x|n]

Z as|njxn]

T

#full cos sin anal

24

Looks pretty good, how about re-synthesis ?

* Again, multiply each basis by the respective coefficient and sum it all
N

rsin] =cy + ¢ COS(Q?TN?’Z-) + co cos(?wﬁn) +... Fcey COS(QWﬁn)

N

1 2 ‘
+ dy sin(QWNn) + do sin(QWNn) +...+dy sin(zwﬁn)

* Also nicely doable as vector-matrix multiplication: x,=c"A+d" B
#full _cos_sin_synt

Works ! However, keeping track of cosines and sines is a bit
complicated ...

The ultimate basis for spectral analysis — a
complex exponential

* Complex exponential contains both cosine and sine in one function

* k k
L 327r—k n 2 v . 2 v
CL[?’L] — € N — COS 4TI N?’L —|— S111 271 N?’L

Complex exponentials are also harmonically related: the first has normalized
frequency 1/N, the next 2/N, etc ...

#Hcomplex_exp

* Special cases
e k =0 - analysis of the D.C. component (always 1)
* k=N/2 — analysis of the fastest function — each sample changes polarity
* Both are real !

Analysis by complex exponentials
X|k] = i xz[n]e 72N "

* Why the minus ???

* Projection to real numbers: in case |a| =1, it is enough to multiply
with the base and we obtain a good coefficient for reconstruction:
x=3, b=1: projection c=xb = 3, reconstruction:cb=3.1 =3 0K

* Projection to a complex number: x=3, b = %(1 +7)
projection: c¢=axb=3x J(1+j) = J5(3+3j)
reconstruction: = =c¢xb= (3+3j) x %(1 +7)=3j5 notOK

Analysis involves conjugating the complex
basis

* Fixing this problem - take a complex conjugate (komplexni sdruzeni)
ofthebasis: = _ .. _ o 11—y %(3_3‘7.)

V2
c X b=6.
* More generally: for analysis signal a[n], that is complex, take it’s
complex conjugate a’[n]. For our bases

a[n] — eﬂ’ﬁ%n a*[n] _ e—jQW%n

* The same complex exponential, but turning in opposite direction

#plus_minus_complex_exp

Discrete Fourier transform (Diskrétni
~ourierova transformace) (DFT) x@ =3 a7

n=0
aopln] = eI2T N X[o] = > apn]z[n]
ay[n] = €27 " X[l]—Ni ;
i =) aj[njz(n]
as|n| = ei2T N N1 X = A*XT
o X[2]= > asnlz[n]
oy o
an[n] =e*"N" X[5]= 3" ay[nlen]
2 =0

* What does it tell us ?
* Index k tells us which frequency
* Magnitude (absolutni hodnota, modul) | X[k]| tells us how much
* Phase (faze, uhel, argument, fazovy posuv) arg X/k] tells us how shifted

#dft anal

29

Synthesis from all this ...

* We have done synthesis as :[n| = co + cra1[n] + czaz[n] + ... +cy
* So here it should be

zs[n] = X[0] + X[1]e?2" N7 + X[2]ed2" N 4 . 4 cy ej%%”
* Qoops, we'd get something complex ®

* We could extract the magnitudes and phases from complex
coefficients and do something like this

N

rs[n] = X1[0] + i: 2| X k|| cos (2%%7’5 + arg X[k])

* But it would be complicated as a hell, and we love our complex
exponentials, so ...

Complex exponentials only ...

* We use the old trick with a conjugate complex exponential turning in
the opposite direction

. ey Jjo —Jjo
* Definition: cosqy = &€

2

Our case X[k]e??™ " 4+ X*[kle 7?" " = 2| X [k]| cos (QWNTL + argX[k])

#tdiscrete _cos decomposition (reproduced from the last lecture)

* But we absolutely want to stay in positive indices k, a bit of math will
help us to go from —k (negative) to N-k (positive):

—j@r g —2m)n _ j2m g

—jZﬂF%n _ n

€ €

DFT with all N output coefficients

2w £on
* We perform the analysis Z slnle for the full range
k=0... N-1knowing that there will be symmetry between
* The coefficients: X[k] = X*[N-k], this means |X[k]| = | X[N-k]|
and arg X[k] = - arg X[k] iam ko * | _omkn
 The complex exponentials: (e :) —© :

N-—-1
_ +j2mEn
* We'll perform the synthesis relnl = ,;) XlHe
range of coefficients k = 0... N-1 knowing that
e k=0 will produce a D.C. value (real signal)
* k=N/2 will produce a real signal as well (+1,-1,+1,-1, ...)

* For other k’s, pairs k and N-k will produce two complex exponentials running
in the opposite direction, summing up to a cosine:

X[k]e??"~™ 4 X[—k]e 92" %" = 2| X[k]| cos (27r%’n, + argX[k])

again with the full

Full DFT spectrum and how many values do
we have ?

#full_dft_anal

* Let’s count the floats:
e X[0] —real, 1 float
* X[1... N/2-1] — complex, 2 floats each: 2(N/2 — 1)
* XIN/2] —real, 1 float
 X[N/2+1 ... N-1] — no floats needed, we already have them: X[k] = X*[N-k]

e All together: 1+ 2(N/2—-1) +1 =N, OK, DFT preserves all the
information

33

DFT synthesis — inverse Discrete Fourier Transform
(inverzni diskrétni Fourierova transformace)

N-1 |
zan] = Y X[k]etPTwn
k=0

#full _dft_synt

* Very nice, except for the dynamic range ... max = 0.57 for the original
signal and 147 for the synthesized one ®

e ... it has something to do with the “normality” of DFT bases (see next
lecture).

* Now, we just apply a correction term, so the ultimate definition of
DFT and IDFT is

34

Using DFT in your code

* DFT is computation hungry

* Computation of each output coefficient involves N complex mutliplications
and N complex additions.

* And there are N output coefficients, co that the complexity is 2N?

* Quadratic complexity is bad even with modern ?
computers with GPUs and was even worse f
in the 60’s where a computer occupying :
whole room had computing power '
smaller than your smart watch.

* Developing FFT in the 60’s completely
revolutionized the signal processing A ¢

James William Cooley John Wilder Tukey
(1926-2016 (1915-2000)

Fast Fourier transform (rychla Fourierova

o [] — F..[L] L4
transformace) - FFT 0 N
2 o= N/ 2-point 1:‘\';-._..‘\ Yoo lll‘ﬁ:{lll
* Works only for powers of 2: N = 20 o] oo DFT EEANN v
: : RNETAL
* Works in b stages and uses the symmetries 2l6] o] EBNAN x
of complex numbers, each stage needs only o] AAANA) "
N operations, the graph looks like butterflies o oI/ NP\ wh
=> butterly algorithm B g [T
. e DFT Pl NN
* The complexity goes from N2to Nlog, N o] = VAN
. 7] e / "'s.ﬁ .
* fft is part of all numerical libraries in all possible 7 o= of3 i

languages.

* Sorry, no time to derive it thoroughly, but look at one of many sources
(incl. Wikipedia)

Remember FFT is not a new transform, it is a fast implementation of DFT !
#fft_anal_synt

36

Showing and interpreting the result of DFT -
frequency

* Your boss/colleague/customer won’t like you for just the index k on x-axis
* Normalized frequency (normovana frekvence) k / N is better

e Regular frequency in Hertz is even better
* Need the sampling frequency (vzorkovaci frekvence) F, [Hz] — number of samples
per second. Sampling period (vzorkovaci perioda) T, =1/ F, is in seconds.
* many ways to derive the conversion but let’s do it this simple way:

* The period of a cos (or sine or complex exp.) with normalized frequency of 1/Nis N
samples.

* The period in time is N T_.. Therefore the frequencyis 1/(NT) =F./ N.

Normalizing and de-normalizing frequencies involves just by division and
multiplication by the sampling frequency F,

#dft freq_axes

Showing and interpreting the result of DFT —
going to F . or just F, /2 ?

* We usually show only the left part of the DFT spectrum as the right one is
not informative.

* indices 0... N/2, attention, this is N/2+1 coefficients, not N/2 !l For N=256, we’ll
need to keep 129 values !!!

* normalized frequencies 0... 1/2,
* regular frequencies 0... F /2

#dft_final visualization

Attention: the halves are symmetrical only for real input signals. Beware in
case you have to process anything complex (digital radio, microphone
arrays, ...)

38

Frequency resolution of DFT

* Interval O ... F_ is divided into N samples, therefore the frequency
resolutionis F_/ N.

Az /Bb. A#1/B51

13 A A1
* This is not much, consider an example: St =
* F,=48000 Hz. Fz /G, F21/G>1

9 F F1

* Trying to tune low tones on a piano
* Performing DFT with N = 256 samples.
* The resoluition is 48000 / 256 = 187 Hz — quite bad if we need units of Hz !

58.2705
55.0000
91.9131
48.9994
46.2493
43.6535

Increasing the resolution — option I.

* Increase the number of samples, in case we have F, = 48000 Hz, let’s
take N = 65536 and run FFT

* This will take lots of computation !

* The missing samples can be either taken from the signal (if we have
them) or filled by zeros — zero padding (doplnovani nulami)

#zero padding

With zero padding, the result looks nicer, but there is no new
information !

40

or ... Discrete time Fourier Transform (Fourierova
transformace s diskrétnim casem) - DTFT

* DFT sets the normalized frequency points to multiples of 1 /N

 DTFT can work with anything — usually defined with normalized

angular frequency _, [/
F

* We can set the range of frequencies to anything we want.

* However, needs to compute by definition and therefore much slower
than FFT.

* Let us show analysis of our speech spectrum with better precision
around the maximum

#dtft study carefully, you might need it in the project ©

41

SUMMARY

* We analyze by multiplying and summing vectors

* Difficult signals are analyzed by harmonically related functions
e Cosines — not enough
* Cosines and sines —too complicated
* Ultimate solution: complex exponentials => DFT

e The original signal can be fully re-synthesized — IDFT (making use of
properties of complex numbers to get a real signal)

* The results are there for N discrete frequencies from O till almost F,
* Of these, only N/2+1 are worth showing
e with a nice frequency axis |

* Frequency resolution is limited but can be improved
* by zero padding
* By switching to DTFT

42

	Snímka 1: Introduction to spectral analysis
	Snímka 2: The goal of spectral analysis
	Snímka 3: Guitar
	Snímka 4: Recorder (zobcová flétna)
	Snímka 5: Human voice (lidský hlas)
	Snímka 6: Not just audio … seismology, vibration analysis
	Snímka 7: Why are the signals around us complex ?
	Snímka 8: Harmonically related signals
	Snímka 9: Spectral analysis
	Snímka 10: Implementation of this simple equation
	Snímka 11: Examples of analysis – use also your intuition !
	Snímka 12
	Snímka 13
	Snímka 14
	Snímka 15
	Snímka 16: Cosines seem to work !
	Snímka 17: Massive spectral analysis with cosines !
	Snímka 18: The input signal and reference spectrum …
	Snímka 19: Prepare the battery of cosines and run the show!
	Snímka 20: Result of analysis
	Snímka 21: Let’s try to re-synthesize the signal …
	Snímka 22: Phase is the problem !
	Snímka 23: Analysis with whole groups of cosines and sines
	Snímka 24: Let’s go
	Snímka 25: Looks pretty good, how about re-synthesis ?
	Snímka 26: The ultimate basis for spectral analysis – a complex exponential
	Snímka 27: Analysis by complex exponentials
	Snímka 28: Analysis involves conjugating the complex basis
	Snímka 29: Discrete Fourier transform (Diskrétní Fourierova transformace) (DFT)
	Snímka 30: Synthesis from all this …
	Snímka 31: Complex exponentials only …
	Snímka 32: DFT with all N output coefficients
	Snímka 33: Full DFT spectrum and how many values do we have ?
	Snímka 34: DFT synthesis – inverse Discrete Fourier Transform (inverzní diskrétní Fourierova transformace)
	Snímka 35: Using DFT in your code
	Snímka 36: Fast Fourier transform (rychlá Fourierova transformace) - FFT
	Snímka 37: Showing and interpreting the result of DFT - frequency
	Snímka 38: Showing and interpreting the result of DFT – going to Fs or just Fs /2 ?
	Snímka 39: Frequency resolution of DFT
	Snímka 40: Increasing the resolution – option I.
	Snímka 41: or … Discrete time Fourier Transform (Fourierova transformace s diskrétním časem) - DTFT
	Snímka 42: SUMMARY

