
Introduction
to spectral analysis

Honza Černocký, ÚPGM

Please open Python notebook 02_spectral.

The goal of spectral analysis

• Take a complicated signal and try to see how it is composed from
frequency components

• What do we want to know about them
• At which frequencies they are

• How strong they are

• How they are shifted in time

• We can perform it for a single segment of a signal -> spectrum

• Or we can see the evaluation of spectrum during the time ->
spectrogram

2

Guitar

• Piece of signal and its spectrum

• Whole signal and its spectrogram

3

Recorder (zobcová flétna)

4

Human voice (lidský hlas)

5

Not just audio … seismology, vibration analysis

6

Why are the signals around us complex ?

Because they are created by complicated physical processes, not by a
cosine generator !

• Strings: several vibration modes together, see for example
https://www.youtube.com/watch?v=BSIw5SgUirg

• Flutes (tubes): dtto,
https://www.youtube.com/watch?v=KZ7intMz2Y4

• Human voice: vocal chords (hlasivky) do everything but smooth
movements, and this creates lots of frequencies:
https://www.youtube.com/watch?v=y2okeYVclQo

7

https://www.youtube.com/watch?v=BSIw5SgUirg
https://www.youtube.com/watch?v=KZ7intMz2Y4
https://www.youtube.com/watch?v=y2okeYVclQo

Harmonically related signals

• Most of frequency analysis involves a fundamental frequency
(základní frekvence, fundamentální frekvence)

• and its multiples – harmonically related frequencies (harmonicky
vztažené frekvence) or simply harmonics (harmonické).
• Musicians might have heard about it in the music theory classes – aliquots

(alikvotní tóny)

Our spectral analysis will follow the same principles – fundamental
frequency and its mutliples.

8

Spectral analysis

• Correlation

• Determination of similarity

• Projection to bases

• Notation
• x[n] is the unknown signal

• a[n] is a known (generated) analysis signal

• c is the resulting coefficient quantifying correlation / similarity / strength of
projection

9

The same !}

Implementation of this simple equation

• x[n] and a[n] are stored in row vectors.

• np.sum(a * x) – straightforward implementation

• np.dot(a, x.T) – dot product (skalární součin) of 2 vectors (the
2nd one must be column)

• np.matmul(a, x.T) – the same using a function for matrix
multiplication

• np.matmul(A, x.T)
• more bases stored in the rows of matrix A
• we’ll get whole vector of coefficients
• we’ll see this all the time !

#computing_projection
10

Examples of analysis – use also your intuition !

• “Unknown” signal has N=128 samples, let’s begin with a D.C. signal …

• We’ll always show the product x[n] a[n]

• Analysis signals will be
• another DC signal big similarity

• Cosine – 1 period in N samples no similarity

• Cosine – 2 periods in N samples no similarity

#dc_signal_analysis

11

• “Unknown” signal is 1 period of cosine

• Analysis signals will be
• another DC signal no similarity

• Cosine – 1 period in N samples big similarity

• Cosine – 2 periods in N samples no similarity

#1cos_analysis

12

• “Unknown” signal are 2 periods of cosine

• Analysis signals will be
• another DC signal no similarity

• Cosine – 1 period in N samples no similarity

• Cosine – 2 periods in N samples big similarity

#2cos_analysis

13

• “Unknown” signal are 2 periods of cosine + some D.C. component

• Analysis signals will be
• another DC signal some similarity

• Cosine – 1 period in N samples no similarity

• Cosine – 2 periods in N samples some similarity

Wow, the projection manages to separate the “strengths” of D.C. and
cosine !

#2cos_dc_analysis

14

• “Unknown” signal are 2 periods of cosine + some noise

• Analysis signals will be
• another DC signal not showing - no similarity

• Cosine – 1 period in N samples not showing - no similarity

• Cosine – 2 periods in N samples some similarity – same as for clean
one !

Wow, analysis by cosines seems to be robust !

#2cos_noise_analysis

15

Cosines seem to work !

• Big positive – correlation, similarity, this frequency IS in the analyzed
signal.

• Big negative – anti-correlation, similar, but in the inverse sense, the
frequency IS in the analyzed signal with minus sign.

• Small / zero – no correlation, no similarity, the frequency is not there
or just a little.

16

Massive spectral analysis with cosines !

• Working with cosines seems to work perfectly, let’s run a massive
spectral analysis with many of them.

• We’ll get many cosines cos(2π k n / N) … but how many ?
• k = 0 is the D.C. : cos(2π k n / N) = cos(0) = 1
• k = 1 is one period in N samples
• k = 2 are two periods in N samples
• …
• k = N/2 is the fastest cosine we can generate: cos(2π (N/2) n / N) = cos(π n)

generates +1, -1, +1, -1 … changing polarity every sample.

#show_range_of_cosines

17

The input signal and reference spectrum …

• 256 samples from sound ‘e’ from my favorite test signal “Létající
prase”.

• the reference spectrum should look like this

#prase_signal

18

Prepare the battery of cosines and run
the show!

#full_cos_anal

19

Result of analysis

• Coefficients ck

• Coefficients ck

in absolute values |ck|

Is this OK ???

20

Let’s try to re-synthesize the signal …

• Multiply each basis by the respective coefficient and sum it all

• For our cosines

• Also nicely doable as vector-matrix multiplication: xs = cT A

#full_cos_synt

Failure – WHY ???

21

Phase is the problem !

• “Unknown” signal are 2 periods of a sine

• Analysis signals will be
• Cosine – 2 periods in N samples zero, that’s bad !!!

#2sin_analysis

 we’ll need to analyze the signals by both cosine and sine !

#2cos_sin_analysis

22

Analysis with whole groups of cosines and
sines

• How will the analysis signals for limit values look like ?

23

Let’s go

#full_cos_sin_anal

24

Looks pretty good, how about re-synthesis ?

• Again, multiply each basis by the respective coefficient and sum it all

• Also nicely doable as vector-matrix multiplication: xs = cT A + dT B

#full_cos_sin_synt

Works ! However, keeping track of cosines and sines is a bit
complicated … 25

The ultimate basis for spectral analysis – a
complex exponential
• Complex exponential contains both cosine and sine in one function

Complex exponentials are also harmonically related: the first has normalized
frequency 1/N, the next 2/N, etc …
#complex_exp

• Special cases
• k = 0 – analysis of the D.C. component (always 1)
• k = N/2 – analysis of the fastest function – each sample changes polarity
• Both are real !

26

Analysis by complex exponentials

• Why the minus ???

• Projection to real numbers: in case |a| = 1, it is enough to multiply
with the base and we obtain a good coefficient for reconstruction:
x = 3, b = 1: projection c = xb = 3, reconstruction: cb = 3 . 1 = 3 OK

• Projection to a complex number: x = 3,
projection:
reconstruction: not OK

27

Analysis involves conjugating the complex
basis
• Fixing this problem - take a complex conjugate (komplexní sdružení)

of the basis:

• More generally: for analysis signal a[n], that is complex, take it’s
complex conjugate a*[n]. For our bases

• The same complex exponential, but turning in opposite direction

#plus_minus_complex_exp

28

Discrete Fourier transform (Diskrétní
Fourierova transformace) (DFT)

• What does it tell us ?
• Index k tells us which frequency

• Magnitude (absolutní hodnota, modul) |X[k]| tells us how much

• Phase (fáze, úhel, argument, fázový posuv) arg X[k] tells us how shifted

#dft_anal
29

Synthesis from all this …

• We have done synthesis as

• So here it should be

• Ooops, we’d get something complex 

• We could extract the magnitudes and phases from complex
coefficients and do something like this

• But it would be complicated as a hell, and we love our complex
exponentials, so …

30

Complex exponentials only …

• We use the old trick with a conjugate complex exponential turning in
the opposite direction
• Definition:

• Our case

#discrete_cos_decomposition (reproduced from the last lecture)

• But we absolutely want to stay in positive indices k, a bit of math will
help us to go from –k (negative) to N-k (positive):

31

DFT with all N output coefficients

• We perform the analysis for the full range
k = 0 … N-1 knowing that there will be symmetry between
• The coefficients: X[k] = X*[N-k], this means |X[k]| = |X[N-k]|

and arg X[k] = - arg X[k]
• The complex exponentials:

• We’ll perform the synthesis again with the full
range of coefficients k = 0 … N-1 knowing that
• k = 0 will produce a D.C. value (real signal)
• k = N/2 will produce a real signal as well (+1,-1,+1,-1, …)
• For other k’s, pairs k and N-k will produce two complex exponentials running

in the opposite direction, summing up to a cosine:

32

Full DFT spectrum and how many values do
we have ?
#full_dft_anal

• Let’s count the floats:
• X[0] – real, 1 float

• X[1 … N/2-1] – complex, 2 floats each: 2(N/2 – 1)

• X[N/2] – real, 1 float

• X[N/2+1 … N-1] – no floats needed, we already have them: X[k] = X*[N-k]

• All together: 1 + 2(N/2 – 1) + 1 = N, OK, DFT preserves all the
information

33

DFT synthesis – inverse Discrete Fourier Transform
(inverzní diskrétní Fourierova transformace)

#full_dft_synt

• Very nice, except for the dynamic range … max = 0.57 for the original
signal and 147 for the synthesized one 

• … it has something to do with the “normality” of DFT bases (see next
lecture).

• Now, we just apply a correction term, so the ultimate definition of
DFT and IDFT is

34

Using DFT in your code

• DFT is computation hungry
• Computation of each output coefficient involves N complex mutliplications

and N complex additions.

• And there are N output coefficients, co that the complexity is 2N2

• Quadratic complexity is bad even with modern
computers with GPUs and was even worse
in the 60’s where a computer occupying
whole room had computing power
smaller than your smart watch.

• Developing FFT in the 60’s completely
revolutionized the signal processing

35
2016

Fast Fourier transform (rychlá Fourierova
transformace) - FFT
• Works only for powers of 2: N = 2b

• Works in b stages and uses the symmetries
of complex numbers, each stage needs only
N operations, the graph looks like butterflies
=> butterly algorithm

• The complexity goes from N2 to N log2 N

• fft is part of all numerical libraries in all possible
languages.

• Sorry, no time to derive it thoroughly, but look at one of many sources
(incl. Wikipedia)

Remember FFT is not a new transform, it is a fast implementation of DFT !

#fft_anal_synt
36

Showing and interpreting the result of DFT -
frequency
• Your boss/colleague/customer won’t like you for just the index k on x-axis

• Normalized frequency (normovaná frekvence) k / N is better

• Regular frequency in Hertz is even better
• Need the sampling frequency (vzorkovací frekvence) Fs [Hz] – number of samples

per second. Sampling period (vzorkovací perioda) Ts = 1 / Fs is in seconds.

• many ways to derive the conversion but let’s do it this simple way:
• The period of a cos (or sine or complex exp.) with normalized frequency of 1/N is N

samples.
• The period in time is N Ts. Therefore the frequency is 1/ (N Ts) = Fs / N.

Normalizing and de-normalizing frequencies involves just by division and
multiplication by the sampling frequency Fs.

#dft_freq_axes
37

Showing and interpreting the result of DFT –
going to Fs or just Fs /2 ?
• We usually show only the left part of the DFT spectrum as the right one is

not informative.
• indices 0 … N/2, attention, this is N/2+1 coefficients, not N/2 !!! For N=256, we’ll

need to keep 129 values !!!
• normalized frequencies 0 … 1/2,
• regular frequencies 0 … Fs/2

#dft_final_visualization

Attention: the halves are symmetrical only for real input signals. Beware in
case you have to process anything complex (digital radio, microphone
arrays, …)

38

Frequency resolution of DFT

• Interval 0 … Fs is divided into N samples, therefore the frequency
resolution is Fs / N.

• This is not much, consider an example:
• Fs = 48000 Hz.

• Trying to tune low tones on a piano

• Performing DFT with N = 256 samples.

• The resoluition is 48000 / 256 = 187 Hz – quite bad if we need units of Hz !

39

Increasing the resolution – option I.

• Increase the number of samples, in case we have Fs = 48000 Hz, let’s
take N = 65536 and run FFT

• This will take lots of computation !

• The missing samples can be either taken from the signal (if we have
them) or filled by zeros – zero padding (doplňování nulami)

#zero_padding

With zero padding, the result looks nicer, but there is no new
information !

40

or … Discrete time Fourier Transform (Fourierova
transformace s diskrétním časem) - DTFT

• DFT sets the normalized frequency points to multiples of 1 / N

• DTFT can work with anything – usually defined with normalized
angular frequency

• We can set the range of frequencies to anything we want.

• However, needs to compute by definition and therefore much slower
than FFT.

• Let us show analysis of our speech spectrum with better precision
around the maximum

#dtft study carefully, you might need it in the project ☺
41

SUMMARY

• We analyze by multiplying and summing vectors
• Difficult signals are analyzed by harmonically related functions

• Cosines – not enough
• Cosines and sines – too complicated
• Ultimate solution: complex exponentials => DFT

• The original signal can be fully re-synthesized – IDFT (making use of
properties of complex numbers to get a real signal)

• The results are there for N discrete frequencies from 0 till almost Fs
• Of these, only N/2+1 are worth showing
• with a nice frequency axis !

• Frequency resolution is limited but can be improved
• by zero padding
• By switching to DTFT

42

	Snímka 1: Introduction to spectral analysis
	Snímka 2: The goal of spectral analysis
	Snímka 3: Guitar
	Snímka 4: Recorder (zobcová flétna)
	Snímka 5: Human voice (lidský hlas)
	Snímka 6: Not just audio … seismology, vibration analysis
	Snímka 7: Why are the signals around us complex ?
	Snímka 8: Harmonically related signals
	Snímka 9: Spectral analysis
	Snímka 10: Implementation of this simple equation
	Snímka 11: Examples of analysis – use also your intuition !
	Snímka 12
	Snímka 13
	Snímka 14
	Snímka 15
	Snímka 16: Cosines seem to work !
	Snímka 17: Massive spectral analysis with cosines !
	Snímka 18: The input signal and reference spectrum …
	Snímka 19: Prepare the battery of cosines and run the show!
	Snímka 20: Result of analysis
	Snímka 21: Let’s try to re-synthesize the signal …
	Snímka 22: Phase is the problem !
	Snímka 23: Analysis with whole groups of cosines and sines
	Snímka 24: Let’s go
	Snímka 25: Looks pretty good, how about re-synthesis ?
	Snímka 26: The ultimate basis for spectral analysis – a complex exponential
	Snímka 27: Analysis by complex exponentials
	Snímka 28: Analysis involves conjugating the complex basis
	Snímka 29: Discrete Fourier transform (Diskrétní Fourierova transformace) (DFT)
	Snímka 30: Synthesis from all this …
	Snímka 31: Complex exponentials only …
	Snímka 32: DFT with all N output coefficients
	Snímka 33: Full DFT spectrum and how many values do we have ?
	Snímka 34: DFT synthesis – inverse Discrete Fourier Transform (inverzní diskrétní Fourierova transformace)
	Snímka 35: Using DFT in your code
	Snímka 36: Fast Fourier transform (rychlá Fourierova transformace) - FFT
	Snímka 37: Showing and interpreting the result of DFT - frequency
	Snímka 38: Showing and interpreting the result of DFT – going to Fs or just Fs /2 ?
	Snímka 39: Frequency resolution of DFT
	Snímka 40: Increasing the resolution – option I.
	Snímka 41: or … Discrete time Fourier Transform (Fourierova transformace s diskrétním časem) - DTFT
	Snímka 42: SUMMARY

