Introduction
to spectral analysis

Honza Cernocky, UPGM

Please open Python notebook 02 spectral.



The goal of spectral analysis

* Take a complicated signal and try to see how it is composed from
frequency components

 What do we want to know about them
* At which frequencies they are
* How strong they are
 How they are shifted in time

* We can perform it for a single segment of a signal -> spectrum

* Or we can see the evaluation of spectrum during the time ->
spectrogram
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Spectral Acceleration (x g)

Not just audio ... seismology, vibration analysis

ACHAIA-ILIA ERTHQUAKE, June 08, 2008. M=6.5, Elastic response Chadwick 8500C+ Balancer/Analyzer
acceleration spectra of horizontal components ({=0.05)
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Why are the signals around us complex ?

Because they are created by complicated physical processes, not by a
cosine generator !

 Strings: several vibration modes together, see for example
https://www.youtube.com/watch?v=BSIw5SgUirg

* Flutes (tubes): dtto,
https://www.youtube.com/watch?v=KZ7intMz2Y4

 Human voice: vocal chords (hlasivky) do everything but smooth
movements, and this creates lots of frequencies:
https://www.youtube.com/watch?v=y2okeYVclQo



https://www.youtube.com/watch?v=BSIw5SgUirg
https://www.youtube.com/watch?v=KZ7intMz2Y4
https://www.youtube.com/watch?v=y2okeYVclQo

Harmonically related signals

* Most of frequency analysis involves a fundamental frequency
(zakladni frekvence, fundamentalni frekvence)

e and its multiples — harmonically related frequencies (harmonicky
vztazené frekvence) or simply harmonics (harmonické).

* Musicians might have heard about it in the music theory classes — aliquots
(alikvotni tony)

Our spectral analysis will follow the same principles — fundamental
frequency and its mutliples.



Spectral analysis

* Correlation
* Determination of similarity The same !
* Projection to bases

* Notation
* x[n] is the unknown signal
e a[n] is a known (generated) analysis signal

* cis the resulting coefficient quantifying correlation / similarity / strength of
projection
N—1

c = Z r[nla[n|

n=>0



Implementation of this simple equation

* x[n] and a[n] are stored in row vectors.
*np.sum(a * x) —straightforward implementation

e np.dot (a, x.T) —dot product (skalarni soucin) of 2 vectors (the
2"d one must be column)

e np.matmul (a, x.T) —the same using a function for matrix
multiplication

* np.matmul (A, x.T)
* more bases stored in the rows of matrix A

* we’ll get whole vector of coefficients
* we'll see this all the time! ¢ = Ax'

#computing_ projection



Examples of analysis — use also your intuition !

* “Unknown” signal has N=128 samples, let’s begin with a D.C. signal ...
* We'll always show the product x[n] a[n]

* Analysis signals will be

e another DC signal big similarity
* Cosine —1 period in N samples no similarity
* Cosine — 2 periods in N samples no similarity

#dc_signal analysis
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* “Unknown” signal is 1 period of cosine
* Analysis signals will be

e another DC signal no similarity
* Cosine —1 period in N samples big similarity
* Cosine — 2 periods in N samples no similarity

#1cos_analysis



* “Unknown” signal are 2 periods of cosine
* Analysis signals will be

e another DC signal no similarity
* Cosine —1 period in N samples no similarity
* Cosine — 2 periods in N samples big similarity

#2cos_analysis



* “Unknown” signal are 2 periods of cosine + some D.C. component

* Analysis signals will be

e another DC signal some similarity
* Cosine —1 period in N samples no similarity
* Cosine — 2 periods in N samples some similarity

Wow, the projection manages to separate the “strengths” of D.C. and
cosine |

#2cos_dc_analysis



* “Unknown” signal are 2 periods of cosine + some noise
* Analysis signals will be

e another DC signal not showing - no similarity

* Cosine —1 period in N samples not showing - no similarity

* Cosine — 2 periods in N samples some similarity — same as for clean
one !

Wow, analysis by cosines seems to be robust !

#2cos_noise _analysis



Cosines seem to work |

* Big positive — correlation, similarity, this frequency IS in the analyzed
signal.

* Big negative — anti-correlation, similar, but in the inverse sense, the
frequency IS in the analyzed signal with minus sign.

* Small / zero — no correlation, no similarity, the frequency is not there
or just a little.



Massive spectral analysis with cosines |

* Working with cosines seems to work perfectly, let’s run a massive
spectral analysis with many of them.

* We'll get many cosines cos(2rrkn /N ) ... but how many ?
e k=0istheD.C. :cos(2mrkn/N ) =cos(0) =1
* k=1 isone period in N samples
e k=2 are two periods in N samples

* k=N/2is the fastest cosine we can generate: cos(2rt (N/2) n /N ) = cos(rt n)
generates +1, -1, +1, -1 ... changing polarity every sample.

#show_range_of cosines



The input signal and reference spectrum ...

e 256 samples from sound ‘e’ from my favorite test signal “Létajici

prase”.

* the reference spectrum should look like this

#prase_signal
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Prepare the battery of cosines and run

the show!
apn| = 005(27?%?’1)
ayn| = cos(%r%n)
2

asn| = cos(QwNn)

N
ax|n| = cos(Qﬂ%n)

co = Z aop|n|xn)

n=>0

c=Ax"'

#full _cos anal
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Result of analysis

* Coefficients ¢, " oM W

_lﬂ -
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* Coefficients ¢,
in absolute values ¢,/ *]
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Let’s try to re-synthesize the signal ...

* Multiply each basis by the respective coefficient and sum it all
zs|n| = co + cra1(n] + c2a2[n] + ... + cyax(n|
* For our cosines

rs\n| = co+ ¢ COS(ZWﬁn) + 3 cos(27rﬁn) + ...+ cy cos(2m

* Also nicely doable as vector-matrix multiplication: x, = c" A

#full _cos_synt

Failure — WHY ???

= |l

n)
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Phase is the problem |

e “Unknown” signal are 2 periods of a sine

* Analysis signals will be
* Cosine— 2 periods in N samples zero, that’s bad !!!

#2sin_analysis
—> we’ll need to analyze the signals by both cosine and sine !

#2cos_sin_analysis

22



Analysis with whole groups of cosines and
sines

e 2 oy 2
az[n] = cos(2m5n)  ba[n] = sin(2r%n)
ay n] = cos(2mx-n) b% n) = sin(27rn)

* How will the analysis signals for limit values look like ?

23



Let’s go

c=Ax'

do = Z bo[n|z[n]

Z aop[n]xn]

Co

Bx'

dy = Z by [n]x|n]

dy = Z ba[n]x|n]

Z as|njxn]

T

#full cos sin anal
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Looks pretty good, how about re-synthesis ?

* Again, multiply each basis by the respective coefficient and sum it all
N

rsin] =cy + ¢ COS(Q?TN?’Z-) + co cos(?wﬁn) +... Fcey COS(QWﬁn)

N

1 2 ‘
+ dy sin(QWNn) + do sin(QWNn) +...+dy sin(zwﬁn)

* Also nicely doable as vector-matrix multiplication: x,=c"A+d" B
#full _cos_sin_synt

Works ! However, keeping track of cosines and sines is a bit
complicated ...



The ultimate basis for spectral analysis — a
complex exponential

* Complex exponential contains both cosine and sine in one function

* k k
L 327r—k n 2 v . 2 v
CL[?’L] — € N — COS 4TI N?’L —|— S111 271 N?’L

Complex exponentials are also harmonically related: the first has normalized
frequency 1/N, the next 2/N, etc ...

#Hcomplex_exp

* Special cases
e k =0 - analysis of the D.C. component (always 1)
* k=N/2 — analysis of the fastest function — each sample changes polarity
* Both are real !



Analysis by complex exponentials
X|k] = i xz[n]e 72N "

* Why the minus ???

* Projection to real numbers: in case |a| =1, it is enough to multiply
with the base and we obtain a good coefficient for reconstruction:
x=3, b=1: projection c=xb = 3, reconstruction:cb=3.1 =3 0K

* Projection to a complex number: x=3, b = %(1 +7)
projection: c¢=axb=3x J(1+j) = J5(3+3j)
reconstruction: = =c¢xb= (3+3j) x %(1 +7)=3j5 notOK



Analysis involves conjugating the complex
basis

* Fixing this problem - take a complex conjugate (komplexni sdruzeni)
ofthebasis: = _ .. _ o 11—y %(3_3‘7.)

V2
c X b=6.
* More generally: for analysis signal a[n], that is complex, take it’s
complex conjugate a’[n]. For our bases

a[n] — eﬂ’ﬁ%n a*[n] _ e—jQW%n

* The same complex exponential, but turning in opposite direction

#plus_minus_complex_exp



Discrete Fourier transform (Diskrétni
~ourierova transformace) (DFT)  x@ =3 a7

n=0
aopln] = eI2T N X[o] = > apn]z[n]
ay[n] = €27 " X[l]—Ni ;
i = ) aj[njz(n]
as|n| = ei2T N N1 X = A*XT
o X[2]= > asnlz[n]
oy o
an[n] =e*"N" X[5]= 3" ay[nlen]
2 =0

* What does it tell us ?
* Index k tells us which frequency
* Magnitude (absolutni hodnota, modul) | X[k]| tells us how much
* Phase (faze, uhel, argument, fazovy posuv) arg X/k] tells us how shifted

#dft anal
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Synthesis from all this ...

* We have done synthesis as  :[n| = co + cra1[n] + czaz[n] + ... +cy
* So here it should be

zs[n] = X[0] + X[1]e?2" N7 + X[2]ed2" N 4 . 4 cy ej%%”
* Qoops, we'd get something complex ®

* We could extract the magnitudes and phases from complex
coefficients and do something like this

N

rs[n] = X1[0] + i: 2| X k|| cos (2%%7’5 + arg X[k])

* But it would be complicated as a hell, and we love our complex
exponentials, so ...



Complex exponentials only ...

* We use the old trick with a conjugate complex exponential turning in
the opposite direction

. ey Jjo —Jjo
* Definition: cosqy = &€

2

Our case X[k]e??™ " 4+ X*[kle 7?" " = 2| X [k]| cos (QWNTL + argX[k])

#tdiscrete _cos decomposition (reproduced from the last lecture)

* But we absolutely want to stay in positive indices k, a bit of math will
help us to go from —k (negative) to N-k (positive):

—j@r g —2m)n _ j2m g

—jZﬂF%n _ n

€ €



DFT with all N output coefficients

2w £on
* We perform the analysis Z slnle for the full range
k=0... N-1knowing that there will be symmetry between
* The coefficients: X[k] = X*[N-k], this means |X[k]| = | X[N-k]|
and arg X[k] = - arg X[k] iam ko \* | _omkn
 The complex exponentials: (e : ) —© :

N-—-1
_ +j2mEn
* We'll perform the synthesis relnl = ,;) XlHe
range of coefficients k = 0... N-1 knowing that
e k=0 will produce a D.C. value (real signal)
* k=N/2 will produce a real signal as well (+1,-1,+1,-1, ...)

* For other k’s, pairs k and N-k will produce two complex exponentials running
in the opposite direction, summing up to a cosine:

X[k]e??"~™ 4 X[—k]e 92" %" = 2| X[k]| cos (27r%’n, + argX[k])

again with the full



Full DFT spectrum and how many values do
we have ?

#full_dft_anal

* Let’s count the floats:
e X[0] —real, 1 float
* X[1... N/2-1] — complex, 2 floats each: 2(N/2 — 1)
* XIN/2] —real, 1 float
 X[N/2+1 ... N-1] — no floats needed, we already have them: X[k] = X*[N-k]

e All together: 1+ 2(N/2—-1) +1 =N, OK, DFT preserves all the
information
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DFT synthesis — inverse Discrete Fourier Transform
(inverzni diskrétni Fourierova transformace)

N-1 |
zan] = Y X[k]etPTwn
k=0

#full _dft_synt

* Very nice, except for the dynamic range ... max = 0.57 for the original
signal and 147 for the synthesized one ®

e ... it has something to do with the “normality” of DFT bases (see next
lecture).

* Now, we just apply a correction term, so the ultimate definition of
DFT and IDFT is

34



Using DFT in your code

* DFT is computation hungry

* Computation of each output coefficient involves N complex mutliplications
and N complex additions.

* And there are N output coefficients, co that the complexity is 2N?

* Quadratic complexity is bad even with modern ?
computers with GPUs and was even worse f
in the 60’s where a computer occupying :
whole room had computing power '
smaller than your smart watch.

* Developing FFT in the 60’s completely
revolutionized the signal processing A ¢

James William Cooley John Wilder Tukey
(1926-2016 (1915-2000)



Fast Fourier transform (rychla Fourierova

o [ ] — F..[L] L4
transformace) - FFT 0 N
2 o= N/ 2-point 1:‘\';-._..‘\ Yoo lll‘ﬁ:{lll
* Works only for powers of 2: N = 20 o] oo  DFT EEANN v
: : RNETAL
* Works in b stages and uses the symmetries 2l6] o] EBNAN x
of complex numbers, each stage needs only o] AAANA ) "
N operations, the graph looks like butterflies o oI/ NP\ wh
=> butterly algorithm B g [T
. e DFT Pl NN
* The complexity goes from N2to Nlog, N o] = VAN
. . . . . . 7] e / "'s.ﬁ .
* fft is part of all numerical libraries in all possible 7 o= of3 i

languages.

* Sorry, no time to derive it thoroughly, but look at one of many sources
(incl. Wikipedia)

Remember FFT is not a new transform, it is a fast implementation of DFT !
#fft_anal_synt
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Showing and interpreting the result of DFT -
frequency

* Your boss/colleague/customer won’t like you for just the index k on x-axis
* Normalized frequency (normovana frekvence) k / N is better

e Regular frequency in Hertz is even better
* Need the sampling frequency (vzorkovaci frekvence) F, [Hz] — number of samples
per second. Sampling period (vzorkovaci perioda) T, =1/ F, is in seconds.
* many ways to derive the conversion but let’s do it this simple way:

* The period of a cos (or sine or complex exp.) with normalized frequency of 1/Nis N
samples.

* The period in time is N T_.. Therefore the frequencyis 1/(NT) =F./ N.

Normalizing and de-normalizing frequencies involves just by division and
multiplication by the sampling frequency F,

#dft freq_axes



Showing and interpreting the result of DFT —
going to F . or just F, /2 ?

* We usually show only the left part of the DFT spectrum as the right one is
not informative.

* indices 0... N/2, attention, this is N/2+1 coefficients, not N/2 !l For N=256, we’ll
need to keep 129 values !!!

* normalized frequencies 0... 1/2,
* regular frequencies 0... F /2

#dft_final visualization

Attention: the halves are symmetrical only for real input signals. Beware in
case you have to process anything complex (digital radio, microphone
arrays, ...)

38



Frequency resolution of DFT

* Interval O ... F_ is divided into N samples, therefore the frequency
resolutionis F_/ N.

Az /Bb. A#1/B51

13 A A1
* This is not much, consider an example: St =
* F,=48000 Hz. Fz /G, F21/G>1

9 F F1

* Trying to tune low tones on a piano
* Performing DFT with N = 256 samples.
* The resoluition is 48000 / 256 = 187 Hz — quite bad if we need units of Hz !

58.2705
55.0000
91.9131
48.9994
46.2493
43.6535



Increasing the resolution — option I.

* Increase the number of samples, in case we have F, = 48000 Hz, let’s
take N = 65536 and run FFT

* This will take lots of computation !

* The missing samples can be either taken from the signal (if we have
them) or filled by zeros — zero padding (doplnovani nulami)

#zero padding

With zero padding, the result looks nicer, but there is no new
information !

40



or ... Discrete time Fourier Transform (Fourierova
transformace s diskrétnim casem) - DTFT

* DFT sets the normalized frequency points to multiples of 1 /N

 DTFT can work with anything — usually defined with normalized

angular frequency _, [/
F

* We can set the range of frequencies to anything we want.

* However, needs to compute by definition and therefore much slower
than FFT.

* Let us show analysis of our speech spectrum with better precision
around the maximum

#dtft study carefully, you might need it in the project ©
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SUMMARY

* We analyze by multiplying and summing vectors

* Difficult signals are analyzed by harmonically related functions
e Cosines — not enough
* Cosines and sines —too complicated
* Ultimate solution: complex exponentials => DFT

e The original signal can be fully re-synthesized — IDFT (making use of
properties of complex numbers to get a real signal)

* The results are there for N discrete frequencies from O till almost F,
* Of these, only N/2+1 are worth showing
e with a nice frequency axis |

* Frequency resolution is limited but can be improved
* by zero padding
* By switching to DTFT

42
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